Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97200
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorZhang, Yen_US
dc.creatorDuan, HFen_US
dc.creatorKeramat, Aen_US
dc.creatorPan, Ben_US
dc.creatorMeniconi, Sen_US
dc.creatorBrunone, Ben_US
dc.creatorLee, PJen_US
dc.date.accessioned2023-02-16T05:58:49Z-
dc.date.available2023-02-16T05:58:49Z-
dc.identifier.issn0263-2241en_US
dc.identifier.urihttp://hdl.handle.net/10397/97200-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2023 Published by Elsevier Ltd.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following Zhang, Y., Duan, H. F., Keramat, A., Pan, B., Meniconi, S., Brunone, B., & Lee, P. J. (2023). Transient wave-leak interaction analysis for improved leak detection in viscoelastic pipelines. Measurement, 112442 at https://doi.org/10.1016/j.measurement.2023.112442.en_US
dc.subjectLeak detectionen_US
dc.subjectPipe health monitoringen_US
dc.subjectSignal processingen_US
dc.subjectTransient wave reflection-based method (TWRM)en_US
dc.subjectViscoelastic pipelineen_US
dc.titleTransient wave-leak interaction analysis for improved leak detection in viscoelastic pipelinesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume208en_US
dc.identifier.doi10.1016/j.measurement.2023.112442en_US
dcterms.abstractTransient wave reflection methods (TWRMs) have exhibited favorable capability in leak detection for elastic pipelines, but applications have demonstrated their relatively low accuracy for viscoelastic pipelines. This paper investigates the transient wave behaviour, the principal tenet for leak detection by TWRMs, in a leaky viscoelastic pipeline to understand the mechanism of wave modification by leaks and viscoelasticity. Based on the correspondence principle, this research derives analytical formulations of the leak-induced wave reflection and phase difference at any measurement point in a viscoelastic pipe. According to the measured reflection coefficient, an optimization algorithm is further developed to detect the leak. The methodologies are then assessed and discussed through sinusoidal and sigmoid perturbations in numerical and laboratory tests. The extensive analyses indicate that measurement distance and leak ratio affect the magnitude of the reflected wave, yet, the wave phase shift is relatively independent of the leak ratio for practical applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMeasurement : Journal of the International Measurement Confederation, 28 Feb. 2023, v. 208, 112442en_US
dcterms.isPartOfMeasurement : Journal of the International Measurement Confederationen_US
dcterms.issued2023-02-28-
dc.identifier.eissn1873-412Xen_US
dc.identifier.artn112442en_US
dc.description.validate202302 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1918-
dc.identifier.SubFormID46131-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Transient_Wave-Leak_Interaction.pdfPre-Published version1.75 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

87
Citations as of Apr 14, 2025

Downloads

7
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

4
Citations as of Mar 6, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.