Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97152
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.creatorLiu, Xen_US
dc.creatorLiu, Aen_US
dc.creatorChen, JLen_US
dc.creatorLi, Gen_US
dc.date.accessioned2023-02-07T02:22:05Z-
dc.date.available2023-02-07T02:22:05Z-
dc.identifier.issn0261-5177en_US
dc.identifier.urihttp://hdl.handle.net/10397/97152-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectTourism demanden_US
dc.subjectTime series forecastingen_US
dc.subjectDecompositionen_US
dc.subjectBaggingen_US
dc.subjectAutocorrelationen_US
dc.titleImpact of decomposition on time series bagging forecasting performanceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume97en_US
dc.identifier.doi10.1016/j.tourman.2023.104725en_US
dcterms.abstractTime series bagging has been deemed an effective way to improve unstable modelling procedures and subsequent forecasting accuracy. However, the literature has paid little attention to decomposition in time series bagging. This study investigates the impacts of various decomposition methods on bagging forecasting performance. Eight popular decomposition approaches are incorporated into the time series bagging procedure to improve unstable modelling procedures, and the resulting bagging methods' forecasting performance is evaluated. Using the world's top 20 inbound destinations as an empirical case, this study generates one-to eight-step-ahead tourism forecasts and compares them against benchmarks, including non-bagged and seasonal naïve models. For short-term forecasts, bagging constructed via seasonal extraction in autoregressive integrated moving average time series decomposition outperforms other methods. An autocorrelation test shows that efficient decomposition reduces variance in bagging forecasts.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationTourism management, Aug. 2023, v. 97, 104725en_US
dcterms.isPartOfTourism managementen_US
dcterms.issued2023-08-
dc.identifier.eissn1879-3193en_US
dc.identifier.artn104725en_US
dc.description.validate202302 bcwwen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera1902, a2258-
dc.identifier.SubFormID46102, 47252-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-08-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-08-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

73
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

7
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

10
Citations as of Jan 2, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.