Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97091
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorDai, Men_US
dc.creatorKou, Sen_US
dc.creatorQian, SJen_US
dc.creatorWan, XWen_US
dc.date.accessioned2023-01-26T02:28:02Z-
dc.date.available2023-01-26T02:28:02Z-
dc.identifier.issn0025-1909en_US
dc.identifier.urihttp://hdl.handle.net/10397/97091-
dc.language.isoenen_US
dc.publisherInstitute for Operations Research and the Management Sciencesen_US
dc.rightsCopyright © 2021, INFORMSen_US
dc.rightsThis is the accepted manuscript of the following article: Dai, M., Kou, S., Qian, S., & Wan, X. (2022). Nonconcave Utility Maximization with Portfolio Bounds. Management Science, 68(11), 8368-8385, which has been published in final form at https://doi.org/10.1287/mnsc.2021.4228.en_US
dc.subjectPortfolio constraintsen_US
dc.subjectBehavioral economicsen_US
dc.subjectIncentive schemesen_US
dc.subjectConcavification principleen_US
dc.titleNonconcave utility maximization with portfolio boundsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: Non-concave utility maximization with portfolio boundsen_US
dc.identifier.spage8368en_US
dc.identifier.epage8385en_US
dc.identifier.volume68en_US
dc.identifier.issue11en_US
dc.identifier.doi10.1287/mnsc.2021.4228en_US
dcterms.abstractThe problems of nonconcave utility maximization appear in many areas of finance and economics, such as in behavioral economics, incentive schemes, aspiration utility, and goal-reaching problems. Existing literature solves these problems using the concavification principle. We provide a framework for solving nonconcave utility maximization problems, where the concavification principle may not hold, and the utility functions can be discontinuous. We find that adding portfolio bounds can offer distinct economic insights and implications consistent with existing empirical findings. Theoretically, by introducing a new definition of viscosity solution, we show that a monotone, stable, and consistent finite difference scheme converges to the value functions of the nonconcave utility maximization problems.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationManagement science, Nov. 2022, v. 68, no. 11, p. 8368-8385en_US
dcterms.isPartOfManagement scienceen_US
dcterms.issued2022-11-
dc.identifier.eissn1526-5501en_US
dc.description.validate202301 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1437-
dc.identifier.SubFormID44987-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.fundingTextSingapore Ministry of Education Research Granten_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Dai_Non-concave_Utility_Optimization.pdfPre-Published version2.33 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

106
Citations as of Apr 14, 2025

Downloads

298
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

4
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.