Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97090
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorLi, Qen_US
dc.creatorZhu, Len_US
dc.creatorRuan, Hen_US
dc.date.accessioned2023-01-26T02:26:22Z-
dc.date.available2023-01-26T02:26:22Z-
dc.identifier.issn0894-9166en_US
dc.identifier.urihttp://hdl.handle.net/10397/97090-
dc.language.isoenen_US
dc.publisherHuazhong University of Science and Technologyen_US
dc.rights© The Chinese Society of Theoretical and Applied Mechanics 2021en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10338-021-00250-y.en_US
dc.subjectElectromagnetic-thermo-mechanical coupling behavioren_US
dc.subjectFinite element methoden_US
dc.subjectPulse magnetic fielden_US
dc.subjectEddy currenten_US
dc.subjectDelaminationen_US
dc.titleElectromagnetic-thermo-mechanical coupling behavior of Cu/Si layered thin plate under pulsed magnetic fielden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage90en_US
dc.identifier.epage100en_US
dc.identifier.volume35en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1007/s10338-021-00250-yen_US
dcterms.abstractSemiconductor-based electronic devices usually work under multiphysics fields rendering complex electromagnetic–thermo–mechanical coupling. In this work, we develop a penalty function method based on a finite element analysis to tackle this coupling behavior in a metal/semiconductor bilayer plate—the representative unit of semiconductor antenna, which receives strong and pulsed electromagnetic signals. Under these pulses, eddy current is generated, of which the magnitude varies remarkably from one plate to another due to the difference in electrical conductivity. In the concerned system, the metal layer generates much larger current, resulting in the large temperature rise and the nonnegligible Lorentz force, which could lead to delamination and failure of the semiconductor-based electronic device. This study provides theoretical guidance for the design and protection of semiconductor-based electronic devices in complex environments.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationActa mechanica solida sinica, Feb. 2022, v. 35, no. 1, p. 90-100en_US
dcterms.isPartOfActa mechanica solida sinicaen_US
dcterms.issued2022-02-
dc.identifier.eissn1860-2134en_US
dc.description.validate202301 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1442-
dc.identifier.SubFormID45011-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Electromagnetic–thermo–mechanical.pdfPre-Published version754.86 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

92
Citations as of Apr 14, 2025

Downloads

43
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

1
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

1
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.