Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97081
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorJu, Len_US
dc.creatorLi, Xen_US
dc.creatorQiao, Zen_US
dc.date.accessioned2023-01-19T07:48:38Z-
dc.date.available2023-01-19T07:48:38Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/97081-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2022 Society for Industrial and Applied Mathematicsen_US
dc.subjectSecond-order linear schemeen_US
dc.subjectEnergy dissipation lawen_US
dc.subjectMaximum bound principleen_US
dc.subjectExponential integratoren_US
dc.subjectScalar auxiliary variableen_US
dc.titleGeneralized SAV-exponential integrator schemes for Allen--Cahn type gradient flowsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1905en_US
dc.identifier.epage1931en_US
dc.identifier.volume60en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1137/21M1446496en_US
dcterms.abstractThe energy dissipation law and the maximum bound principle (MBP) are two important physical features of the well-known Allen--Cahn equation. While some commonly used first-order time stepping schemes have turned out to preserve unconditionally both the energy dissipation law and the MBP for the equation, restrictions on the time step size are still needed for existing second-order or even higher order schemes in order to have such simultaneous preservation. In this paper, we develop and analyze novel first- and second-order linear numerical schemes for a class of Allen--Cahn type gradient flows. Our schemes combine the generalized scalar auxiliary variable (SAV) approach and the exponential time integrator with a stabilization term, while the standard central difference stencil is used for discretization of the spatial differential operator. We not only prove their unconditional preservation of the energy dissipation law and the MBP in the discrete setting, but we also derive their optimal temporal error estimates under fixed spatial mesh. Numerical experiments are also carried out to demonstrate the properties and performance of the proposed schemes.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2022, v. 60, no. 4, p. 1905-1931en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2022-
dc.identifier.eissn1095-7170en_US
dc.description.validate202301 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera1783-
dc.identifier.SubFormID45943-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
21m1446496.pdf1.7 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

134
Last Week
1
Last month
Citations as of Nov 10, 2025

Downloads

129
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

32
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

69
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.