Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/96903
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorChen, Len_US
dc.creatorWang, Yen_US
dc.creatorSiu, MFFen_US
dc.date.accessioned2022-12-30T09:02:50Z-
dc.date.available2022-12-30T09:02:50Z-
dc.identifier.issn0926-5805en_US
dc.identifier.urihttp://hdl.handle.net/10397/96903-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2020 Elsevier B.V. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Chen, L., Wang, Y., & Siu, M. F. F. (2020). Detecting semantic regions of construction site images by transfer learning and saliency computation. Automation in Construction, 114, 103185 is available at https://doi.org/10.1016/j.autcon.2020.103185.en_US
dc.subjectSemantic region detectionen_US
dc.subjectImage/video retrievalen_US
dc.subjectAdaptive site image/video croppingen_US
dc.subjectImage saliency analysisen_US
dc.titleDetecting semantic regions of construction site images by transfer learning and saliency computationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume114en_US
dc.identifier.doi10.1016/j.autcon.2020.103185en_US
dcterms.abstractEffective use of massive construction site images and videos requires an efficient storage and retrieval method. However, significant portions of the image regions contain little useful information to project engineers and managers. To reduce resource waste in data storage and retrieval, we developed a new semantic region detection approach using transfer learning and modified saliency computation method without the need to specify targeted objects. In the new approach, the saliency matrix is generated using labelled bounding boxes, and the semantic regions are selected using a developed algorithm. The proposed method was applied to case studies based on two image datasets. The case studies suggest that the proposed method can efficiently detect semantic regions in site images and detect construction events from other image datasets without a modifying or re-training process. The research contributes to construction image analytics academically by advancing the context-based semantic region detection method and practically by facilitating the effective storage and processing of the massive site images and videos.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAutomation in construction, June 2020, v. 114, 103185en_US
dcterms.isPartOfAutomation in constructionen_US
dcterms.issued2020-06-
dc.identifier.isiWOS:000526785800009-
dc.identifier.eissn1872-7891en_US
dc.identifier.artn103185en_US
dc.description.validate202212 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1874-
dc.identifier.SubFormID46065-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Detecting_Semantic_Regions.pdfPre-Published version3.07 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

84
Citations as of Apr 14, 2025

Downloads

107
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

14
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

21
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.