Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/96560
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorInstitute of Textiles and Clothingen_US
dc.creatorZhang, Wen_US
dc.creatorZhang, Len_US
dc.creatorGuo, Jen_US
dc.creatorLee, Jen_US
dc.creatorLin, Len_US
dc.creatorDiao, Gen_US
dc.date.accessioned2022-12-07T02:55:26Z-
dc.date.available2022-12-07T02:55:26Z-
dc.identifier.urihttp://hdl.handle.net/10397/96560-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Zhang, W., Zhang, L., Guo, J., Lee, J., Lin, L., & Diao, G. (2022). Carbon Nanofibers Based on Potassium Citrate/Polyacrylonitrile for Supercapacitors. Membranes, 12(3), 272 is available at https://doi.org/10.3390/membranes12030272en_US
dc.subjectElectrospinningen_US
dc.subjectNanofiber membraneen_US
dc.subjectPotassium citrateen_US
dc.subjectSupercapacitoren_US
dc.titleCarbon nanofibers based on potassium citrate/polyacrylonitrile for supercapacitorsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume12en_US
dc.identifier.issue3en_US
dc.identifier.doi10.3390/membranes12030272en_US
dcterms.abstractWearable supercapacitors based on carbon materials have been emerging as an advanced technology for next-generation portable electronic devices with high performance. However, the application of these devices cannot be realized unless suitable flexible power sources are developed. Here, an effective electrospinning method was used to prepare the one-dimensional (1D) and nanoscale carbon fiber membrane based on potassium citrate/polyacrylonitrile (PAN), which exhibited potential applications in supercapacitors. The chemical and physical properties of carbon nanofibers were characterized by X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and the Brunnauer–Emmett– Teller method. The fabricated carbon nanofiber membrane illustrates a high specific capacitance of 404 F/g at a current density of 1 A/g. The good electrochemical properties could be attributed to the small diameter and large specific surface area, which promoted a high capacity.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMembranes, Mar. 2022, v. 12, no. 3, 272en_US
dcterms.isPartOfMembranesen_US
dcterms.issued2022-03-
dc.identifier.scopus2-s2.0-85125563460-
dc.identifier.eissn2077-0375en_US
dc.identifier.artn272en_US
dc.description.validate202212 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
membranes-12-00272.pdf2.51 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

139
Last Week
4
Last month
Citations as of Nov 10, 2025

Downloads

40
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

4
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.