Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/96458
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electronic and Information Engineering-
dc.contributorDepartment of Electrical Engineering-
dc.creatorChen, Gen_US
dc.creatorChen, Ken_US
dc.creatorGan, Ren_US
dc.creatorRuan, Zen_US
dc.creatorWang, Zen_US
dc.creatorHuang, Pen_US
dc.creatorLu, Cen_US
dc.creatorLau, APTen_US
dc.creatorDai, Den_US
dc.creatorGuo, Cen_US
dc.creatorLiu, Len_US
dc.date.accessioned2022-12-07T02:55:00Z-
dc.date.available2022-12-07T02:55:00Z-
dc.identifier.urihttp://hdl.handle.net/10397/96458-
dc.language.isoenen_US
dc.publisherAIP Publishingen_US
dc.rights© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Chen, G., Chen, K., Gan, R., Ruan, Z., Wang, Z., Huang, P., ... & Liu, L. (2022). High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics, 7(2), 026103 is available at https://doi.org/10.1063/5.0077232.en_US
dc.titleHigh performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrodeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume7en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1063/5.0077232en_US
dcterms.abstractThin-film lithium niobate (TFLN) based traveling-wave modulators maintain simultaneously excellent performances, including large modulation bandwidth, high extinction ratio, low optical loss, and high modulation efficiency. Nevertheless, there still exists a balance between the driving voltage and modulation bandwidth. Here, we demonstrate an ultra-large bandwidth electro-optic modulator without compromising the driving voltage based on the TFLN platform on a silicon substrate, using a periodic capacitively loaded traveling-wave electrode. In order to compensate the slow-wave effect, an undercut etching technique for the silicon substrate is introduced to decrease the microwave refractive index. Our demonstrated devices represent both low optical and low microwave losses, which leads to a negligible optical insertion loss of 0.2 dB and a large electro-optic bandwidth with a roll-off of 1.4 dB at 67 GHz for a 10 mm-long device. A low half-wave voltage of 2.2 V is also achieved. Data rates up to 112 Gb s-1 with PAM-4 modulation are demonstrated. The compatibility of the proposed modulator to silicon photonics facilitates its integration with matured silicon photonic components using, e.g., hybrid integration technologies.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAPL photonics, Feb. 2022, v. 7, no. 2, 026103en_US
dcterms.isPartOfAPL photonicsen_US
dcterms.issued2022-02-
dc.identifier.scopus2-s2.0-85124389375-
dc.identifier.eissn2378-0967en_US
dc.identifier.artn026103en_US
dc.description.validate202212 bckw-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
5.0077232.pdf11.44 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

89
Last Week
1
Last month
Citations as of Oct 13, 2024

Downloads

429
Citations as of Oct 13, 2024

SCOPUSTM   
Citations

60
Citations as of Oct 17, 2024

WEB OF SCIENCETM
Citations

53
Citations as of Oct 17, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.