Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/96127
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorZhang, Pen_US
dc.creatorKlippenstein, SJen_US
dc.creatorHarding, LBen_US
dc.creatorSun, Hen_US
dc.creatorLaw, CKen_US
dc.date.accessioned2022-11-07T03:37:06Z-
dc.date.available2022-11-07T03:37:06Z-
dc.identifier.urihttp://hdl.handle.net/10397/96127-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2014en_US
dc.rightsThe following publication Zhang, P., Klippenstein, S. J., Harding, L. B., Sun, H., & Law, C. K. (2014). Secondary channels in the thermal decomposition of monomethylhydrazine (CH 3 NHNH 2). RSC advances, 4(108), 62951-62964 is available at https://doi.org/10.1039/c4ra13131ben_US
dc.titleSecondary channels in the thermal decomposition of monomethylhydrazine (CH3NHNH2)en_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage62951en_US
dc.identifier.epage62964en_US
dc.identifier.volume4en_US
dc.identifier.issue108en_US
dc.identifier.doi10.1039/c4ra13131ben_US
dcterms.abstractMass spectrometric observations in a very low pressure pyrolysis study (Golden et al., Int. J. Chem. Kinet., 1972, 4, 433-448) of the decomposition of the prototypical rocket fuel monomethylhydrazine (MMH) indicated a dominant role for the molecular channels producing NH3 and H2 and their coproducts. In contrast, a recent ab initio transition state theory based master equation theoretical study (Zhang et al., Proc. Combust. Inst., 2011, 33, 425-432) indicated that simple N-N and C-N bond fissions dominate the kinetics. The possible role of molecular decomposition channels in MMH is explored further through additional investigations of the potential energy surface. These investigations consider the role of triplet channels, of roaming radical channels, and of some previously unexplored pathways for molecular decomposition. New ab initio transition state theory based master equation calculations provide revised predictions for the temperature and pressure dependence of the MMH decomposition kinetics that are in excellent agreement with recent shock tube measurements (Li et al., Comb. Flame, 2014, 161, 16-22). These calculations continue to suggest only a very limited contribution from the molecular elimination channels. A roaming pathway is suggested to provide the dominant route for direct formation of ammonia. The possible role of secondary abstraction reactions in the very-low-pressure pyrolysis experiments is briefly discussed.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationRSC advances, 2014, v. 4, no. 108, p. 62951-62964en_US
dcterms.isPartOfRSC advancesen_US
dcterms.issued2014-
dc.identifier.scopus2-s2.0-84914170388-
dc.identifier.eissn2046-2069en_US
dc.description.validate202211 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B3-1368-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextU.S. Army Research Officeen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Secondary_Channels_Thermal.pdfPre-Published version1.81 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

79
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

69
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.