Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/96098
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorLo, MKen_US
dc.creatorLeung, YFen_US
dc.date.accessioned2022-11-07T03:36:56Z-
dc.date.available2022-11-07T03:36:56Z-
dc.identifier.issn1090-0241en_US
dc.identifier.urihttp://hdl.handle.net/10397/96098-
dc.language.isoenen_US
dc.publisherAmerican Society of Civil Engineersen_US
dc.rights© 2017 American Society of Civil Engineers.en_US
dc.rightsThis material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://doi.org/10.1061/(ASCE)GT.1943-5606.0001720.en_US
dc.subjectConditioned random fielden_US
dc.subjectProbabilistic analysesen_US
dc.subjectSampling locationen_US
dc.subjectShallow foundationen_US
dc.subjectSlope stabilityen_US
dc.titleProbabilistic analyses of slopes and footings with spatially variable soils considering cross-correlation and conditioned random fielden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume143en_US
dc.identifier.issue9en_US
dc.identifier.doi10.1061/(ASCE)GT.1943-5606.0001720en_US
dcterms.abstractThis paper presents probabilistic analyses of slopes and strip footings, with spatially variable soil modeled by the random field theory. Random fields are simulated using Latin hypercube sampling with dependence (LHSD), which is a stratified sampling technique that preserves the spatial autocorrelation characteristics. Latin hypercube sampling with dependence is coupled with polynomial chaos expansion (PCE) to approximate the probability density function of model response. The LHSD-PCE approach is applied to probabilistic slope analyses for soils with cross-correlated shear strength parameters, and is shown to be more robust than raw Monte Carlo simulations, even with much smaller numbers of model simulations. The approach is then applied to strip footing analyses with conditioned random fields of Young's modulus and shear strength parameters, to quantify the reductions in settlement uncertainty when soil samples are available at different depths underneath the footing. The most influential sampling depth is found to vary between 0.25 and 1 times the footing width, depending on the strength mobilization and spatial correlation features. Design charts are established with practical guidelines for quick estimations of uncertainty in footing settlements.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of geotechnical and geoenvironmental engineering, Sept. 2017, v. 143, no. 9, 4017044en_US
dcterms.isPartOfJournal of geotechnical and geoenvironmental engineeringen_US
dcterms.issued2017-09-
dc.identifier.scopus2-s2.0-85019146807-
dc.identifier.eissn1943-5606en_US
dc.identifier.artn4017044en_US
dc.description.validate202211 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B3-0743-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Probabilistic_Analyses_Slopes.pdfPre-Published version1.33 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

81
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

118
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

60
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

48
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.