Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/96028
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorZhang, Zen_US
dc.creatorZhang, Pen_US
dc.date.accessioned2022-11-01T03:39:08Z-
dc.date.available2022-11-01T03:39:08Z-
dc.identifier.issn1044-5110en_US
dc.identifier.urihttp://hdl.handle.net/10397/96028-
dc.language.isoenen_US
dc.publisherBegell House, Inc.en_US
dc.rights© 2018 by Begell House, Inc.en_US
dc.rightsThe following publication Zhang, Z., & Zhang, P. (2018). Modeling kinetic energy dissipation of bouncing droplets for Lagrangian simulation of impinging sprays under high ambient pressures. Atomization and Sprays, 28(8) is available at https://www.dl.begellhouse.com/journals/6a7c7e10642258cc,008a01520eeb7e37,0ea31bcb7adcda05.html.en_US
dc.subjectDroplet collisionen_US
dc.subjectFront tracking methoden_US
dc.subjectHigh pressureen_US
dc.subjectImpinging spraysen_US
dc.subjectKinetic energy dissipationen_US
dc.titleModeling kinetic energy dissipation of bouncing droplets for Lagrangian simulation of impinging sprays under high ambient pressuresen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage673en_US
dc.identifier.epage694en_US
dc.identifier.volume28en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1615/AtomizSpr.2018025900en_US
dcterms.abstractBinary droplet collision under high ambient pressures was investigated numerically by using the front tracking method. The particular interest of the investigation is to predict the kinetic energy dissipation of droplet bouncing, which tends to be the dominant collision outcome in the impinging sprays under high ambient pressures. A practically useful model was proposed based on the predicted kinetic energy dissipation and implemented in the KIVA-3V computer program code for the Lagrangian simulation of the free and impinging spray experiments under high ambient pressures. The results show that the model can make qualitatively satisfactory predictions to the spray shape, the tip penetration length, and the Sauter mean diameter.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAtomization and sprays, 2018, v. 28, no. 8, p. 673-694en_US
dcterms.isPartOfAtomization and spraysen_US
dcterms.issued2018-
dc.identifier.scopus2-s2.0-85056083616-
dc.identifier.eissn1936-2684en_US
dc.description.validate202211 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0722-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextState Key Laboratory of Engines of Tianjin Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS14479825-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Modeling_Kinetic_Energy.pdfPre-Published version5.16 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

66
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

72
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

19
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

12
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.