Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95942
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Nen_US
dc.creatorLi, Xen_US
dc.creatorPeng, Jen_US
dc.creatorXu, ZQen_US
dc.date.accessioned2022-10-28T07:28:23Z-
dc.date.available2022-10-28T07:28:23Z-
dc.identifier.issn0018-9286en_US
dc.identifier.urihttp://hdl.handle.net/10397/95942-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication N. Li, X. Li, J. Peng and Z. Q. Xu, "Stochastic Linear Quadratic Optimal Control Problem: A Reinforcement Learning Method," in IEEE Transactions on Automatic Control, vol. 67, no. 9, pp. 5009-5016, Sept. 2022 is available at https://dx.doi.org/10.1109/TAC.2022.3181248.en_US
dc.subjectOptimal controlen_US
dc.subjectStochastic processesen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectTrajectoryen_US
dc.subjectMathematicsen_US
dc.subjectMathematical modelsen_US
dc.subjectRiccati equationsen_US
dc.titleStochastic linear quadratic optimal control problem : a reinforcement learning methoden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage5009en_US
dc.identifier.epage5016en_US
dc.identifier.volume67en_US
dc.identifier.issue9en_US
dc.identifier.doi10.1109/TAC.2022.3181248en_US
dcterms.abstractThis paper adopts a reinforcement learning (RL) method to solve infinite horizon continuous-time stochastic linear quadratic problems, where the drift and diffusion terms in the dynamics may depend on both the state and control. Based on Bellman’s dynamic programming principle, we present an online RL algorithm to attain optimal control with partial system information. This algorithm computes the optimal control rather than estimates the system coefficients and solves the related Riccati equation. It only requires local trajectory information, which significantly simplifies the calculation process. We shed light on our theoretical findings using two numerical examples.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE transactions on automatic control, Sept 2022, v. 67, no. 9, p. 5009-5016en_US
dcterms.isPartOfIEEE transactions on automatic controlen_US
dcterms.issued2022-09-
dc.identifier.eissn1558-2523en_US
dc.description.validate202207 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1453, a2099-
dc.identifier.SubFormID45032, 46594-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Stochastic_Linear_Quadratic.pdfPre-Published version1.43 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

91
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

214
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

10
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

12
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.