Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95912
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorChen, Ben_US
dc.creatorXu, Hen_US
dc.creatorNi, Men_US
dc.date.accessioned2022-10-26T01:09:25Z-
dc.date.available2022-10-26T01:09:25Z-
dc.identifier.issn0306-2619en_US
dc.identifier.urihttp://hdl.handle.net/10397/95912-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2016 Elsevier Ltd. All rights reserved.AD113en_US
dc.rights© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Chen, B., Xu, H., & Ni, M. (2017). Modelling of SOEC-FT reactor: Pressure effects on methanation process. Applied Energy, 185, 814-824 is available at https://doi.org/10.1016/j.apenergy.2016.10.095.en_US
dc.subjectFischer-Tropsch processen_US
dc.subjectMethane synthesisen_US
dc.subjectPressurized reactoren_US
dc.subjectSolid oxide electrolysis cellen_US
dc.subjectSolid oxide fuel cellen_US
dc.titleModelling of SOEC-FT reactor : pressure effects on methanation processen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage814en_US
dc.identifier.epage824en_US
dc.identifier.volume185en_US
dc.identifier.doi10.1016/j.apenergy.2016.10.095en_US
dcterms.abstractIn this paper a numerical model is developed for a novel reactor combining a Solid Oxide Electrolyzer Cell (SOEC) section with a Fischer Tropsch like section for methane production under pressurized & temperature-gradient condition. Governing equations for mass, momentum, charge transport are solved with Finite Element Method. The chemical reaction kinetics of reversible water gas shift reaction and reversible methanation reaction in Ni/YSZ cathode are fully considered. The model is validated by comparing simulation results with experimental data. Parametric simulations are conducted to understand the physical-chemical processes in the reactor with a focus on the pressure effect. It is predicted that the optimal operating pressure is around 3 bar, beyond which the CH4 conversion ratio (2.5 times enhanced than 1 bar operating) cannot be further increased. It is also found that it is feasible to operate the pressurized SOEC at a lower temperature for CH4 production with improved catalyst activity.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied energy, 1 Jan. 2017, v. 185, part 1, p. 814-824en_US
dcterms.isPartOfApplied energyen_US
dcterms.issued2017-01-02-
dc.identifier.scopus2-s2.0-84998865180-
dc.identifier.eissn1872-9118en_US
dc.description.validate202210 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-1014-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6700222-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Modelling_Soec-Ft_Reactor.pdfPre-Published version1.7 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

101
Last Week
0
Last month
Citations as of Nov 30, 2025

Downloads

264
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

85
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

79
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.