Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95872
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorLiu, Ken_US
dc.creatorSun, Yen_US
dc.creatorZheng, Fen_US
dc.creatorTse, MYen_US
dc.creatorSun, Qen_US
dc.creatorLiu, Yen_US
dc.creatorHao, Jen_US
dc.date.accessioned2022-10-25T04:36:52Z-
dc.date.available2022-10-25T04:36:52Z-
dc.identifier.issn0022-2291en_US
dc.identifier.urihttp://hdl.handle.net/10397/95872-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer Science+Business Media, LLC, part of Springer Nature 2018en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s10909-018-1985-1en_US
dc.subjectColossal permittivityen_US
dc.subjectMultilayer structuresen_US
dc.subjectSemiconductoren_US
dc.titleA general strategy to achieve colossal permittivity and low dielectric loss through constructing insulator/semiconductor/insulator multilayer structuresen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage346en_US
dc.identifier.epage358en_US
dc.identifier.volume192en_US
dc.identifier.issue5-6en_US
dc.identifier.doi10.1007/s10909-018-1985-1en_US
dcterms.abstractIn this work, we propose a route to realize high-performance colossal permittivity (CP) by creating multilayer structures of insulator/semiconductor/insulator. To prove the new concept, we made heavily reduced rutile TiO2 via annealing route in Ar/H2 atmosphere. Dielectric studies show that the maximum dielectric permittivity (~ 3.0 × 104) of our prepared samples is about 100 times higher than that (~ 300) of conventional TiO2. The minimum dielectric loss is 0.03 (at 104–105 Hz). Furthermore, CP is almost independent of the frequency (100–106 Hz) and the temperature (20–350 K). We suggest that the colossal permittivity is attributed to the high carrier concentration of the inner TiO2 semiconductor, while the low dielectric loss is due to the presentation of the insulator layer on the surface of TiO2. The method proposed here can be expanded to other material systems, such as semiconductor Si sandwiched by top and bottom insulator layers of Ga2O3.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of low temperature physics, Sept. 2018, v. 192, no. 5-6, p. 346-358en_US
dcterms.isPartOfJournal of low temperature physicsen_US
dcterms.issued2018-09-
dc.identifier.scopus2-s2.0-85048362896-
dc.identifier.eissn1573-7357en_US
dc.description.validate202210 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0451-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Natural Science Foundation of China; A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS25776531-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zheng_General_Strategy_Achieve.pdfPre-Published version562.89 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

63
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

52
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.