Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95695
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorTan, Hen_US
dc.creatorDu, Xen_US
dc.creatorZhou, Ren_US
dc.creatorHou, Zen_US
dc.creatorZhang, Ben_US
dc.date.accessioned2022-10-05T03:55:26Z-
dc.date.available2022-10-05T03:55:26Z-
dc.identifier.issn0008-6223en_US
dc.identifier.urihttp://hdl.handle.net/10397/95695-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Tan, H., Du, X., Zhou, R., Hou, Z., & Zhang, B. (2021). Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries. Carbon, 176, 383-389 is available at https://doi.org/10.1016/j.carbon.2021.02.003.en_US
dc.subjectIn-situ Ramanen_US
dc.subjectMesoporous carbonen_US
dc.subjectPotassium ion batteryen_US
dc.subjectSolid electrolyte interphaseen_US
dc.titleRational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage383en_US
dc.identifier.epage389en_US
dc.identifier.volume176en_US
dc.identifier.doi10.1016/j.carbon.2021.02.003en_US
dcterms.abstractDisordered carbon is considered as a potential anode material for potassium ion batteries (PIBs) due to its advantages in rate capability compared to graphite. Nevertheless, its capacity is usually limited below 300 mAh g−1. Herein, we demonstrate the performance of low-cost pitch derived carbon could be significantly boosted through synergistic microstructure design and electrode/electrolyte interphase regulation. A considerable amount of mesopore is produced to provide the extra active sites for K ion storage and meanwhile, facilitate the charge transfer. The optimized carbon anode delivers a remarkable capacity of 460 mAh g−1 with outstanding rate capability up to 4.0 A g−1. In-situ Raman spectra reveal the superb performance originates from K ion storage in both the mesopore and disordered graphene layers. The construction of a robust solid electrolyte interphase in ethylene glycol diethyl ether derived electrolyte further improves the long-term stability, leading to an exceptional capacity retention of 80% after 2000 cycles under a current density of 1.0 A g−1. This strategy provides a facile approach to enhance the performance of carbon materials for PIBs via structure and interphase design.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCarbon, May 2021, v. 176, p. 383-389en_US
dcterms.isPartOfCarbonen_US
dcterms.issued2021-05-
dc.identifier.scopus2-s2.0-85100633825-
dc.identifier.eissn1873-3891en_US
dc.description.validate202210 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0039-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50341801-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tan_Rational_Design_Microstructure.pdfPre-Published version1.79 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

63
Last Week
0
Last month
Citations as of Oct 13, 2024

Downloads

55
Citations as of Oct 13, 2024

SCOPUSTM   
Citations

35
Citations as of Oct 17, 2024

WEB OF SCIENCETM
Citations

34
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.