Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95684
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorWong, CMen_US
dc.creatorChan, SFen_US
dc.creatorWu, WCen_US
dc.creatorSuen, CHen_US
dc.creatorYau, HMen_US
dc.creatorWang, DYen_US
dc.creatorLi, Sen_US
dc.creatorDai, JYen_US
dc.date.accessioned2022-10-05T03:55:24Z-
dc.date.available2022-10-05T03:55:24Z-
dc.identifier.issn0041-624Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/95684-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 Elsevier B.V. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Wong, C.-M., et al. (2021). "Tunable high acoustic impedance alumina epoxy composite matching for high frequency ultrasound transducer." Ultrasonics 116: 106506 is available at https://dx.doi.org/10.1016/j.ultras.2021.106506.en_US
dc.subjectAcoustic impedance enhancementen_US
dc.subjectAlumina-epoxy 0-3 compositeen_US
dc.subjectHigh frequency ultrasound transduceren_US
dc.subjectMatching layeren_US
dc.titleTunable high acoustic impedance alumina epoxy composite matching for high frequency ultrasound transduceren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume116en_US
dc.identifier.doi10.1016/j.ultras.2021.106506en_US
dcterms.abstractMatching layer is a critical component that determines the performance of piezoelectric ultrasound transducer. For most piezoelectric materials, their acoustic impedances are significantly higher than human tissues and organs, so a tunable matching layer with a high acoustic impedance is required for optimizing the acoustic wave transmission. In this article, a high compression fabrication method is presented, with which the acoustic impedance of alumina-epoxy composite matching layer can be tuned from 6.50 to 9.47 MRayl by controlling the applied compression pressure and ratio of the components. The maximum acoustic impedance 9.47 MRayl can be achieved by compressing a mixture of 80% alumina weight ratio under a 62.4 MPa pressure. This enhancement mainly relies on the increased acoustic longitudinal velocity which enlarged the tolerance of high to ultra-high frequency transducer fabrication using quarter wavelength matching design. Furthermore, the attenuation of the matching layer developed by this method is only −10 dB/mm at 40 MHz. The very high acoustic impedance value and very low attenuation make this matching material superior than all reported matching materials, and therefore, can enhance the performance of the ultrasound transducers, especially for medical imaging applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationUltrasonics, Sept. 2021, v. 116, 106506en_US
dcterms.isPartOfUltrasonicsen_US
dcterms.issued2021-09-
dc.identifier.scopus2-s2.0-85110214178-
dc.identifier.eissn1874-9968en_US
dc.identifier.artn106506en_US
dc.description.validate202210 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0010-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS60128565-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wong_Tunable_High_Acoustic.pdfPre-Published version2.86 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

59
Last Week
1
Last month
Citations as of Oct 13, 2024

Downloads

126
Citations as of Oct 13, 2024

SCOPUSTM   
Citations

17
Citations as of Oct 17, 2024

WEB OF SCIENCETM
Citations

13
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.