Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95630
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorQurony, Wen_US
dc.creatorHossain, MIen_US
dc.creatorJovanov, Ven_US
dc.creatorKnipp, Den_US
dc.creatorTsang, YHen_US
dc.date.accessioned2022-09-23T09:04:47Z-
dc.date.available2022-09-23T09:04:47Z-
dc.identifier.issn2190-5509en_US
dc.identifier.urihttp://hdl.handle.net/10397/95630-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature 2018en_US
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.en_US
dc.rightsThe following publication Qarony, W., Hossain, M.I., Jovanov, V. et al. Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties. Appl Nanosci 8, 339–346 (2018) is available at https://doi.org/10.1007/s13204-018-0713-0.en_US
dc.subjectFDTDen_US
dc.subjectLight trappingen_US
dc.subjectOrganic solar cellsen_US
dc.subjectPyramid textureen_US
dc.subjectSolar cellen_US
dc.titleMaximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical propertiesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage339en_US
dc.identifier.epage346en_US
dc.identifier.volume8en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1007/s13204-018-0713-0en_US
dcterms.abstractThe partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied nanoscience, Mar. 2018, v. 8, no. 3, p. 339-346en_US
dcterms.isPartOfApplied nanoscienceen_US
dcterms.issued2018-03-
dc.identifier.scopus2-s2.0-85062154186-
dc.identifier.eissn2190-5517en_US
dc.description.validate202209_bcwwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberRGC-B2-0111-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
s13204-018-0713-0.pdf3.19 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

50
Last Week
0
Last month
Citations as of Sep 22, 2024

Downloads

28
Citations as of Sep 22, 2024

SCOPUSTM   
Citations

7
Citations as of Sep 26, 2024

WEB OF SCIENCETM
Citations

6
Citations as of Jun 20, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.