Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95599
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorTang, Jen_US
dc.creatorYin, Qen_US
dc.creatorWang, Qen_US
dc.creatorLi, Qen_US
dc.creatorWang, Hen_US
dc.creatorXu, Zen_US
dc.creatorYao, Hen_US
dc.creatorYang, Jen_US
dc.creatorZhou, Xen_US
dc.creatorKim, JKen_US
dc.creatorZhou, Len_US
dc.date.accessioned2022-09-22T06:14:02Z-
dc.date.available2022-09-22T06:14:02Z-
dc.identifier.issn2040-3364en_US
dc.identifier.urihttp://hdl.handle.net/10397/95599-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2019en_US
dc.rightsThe following publication Tang, J., Yin, Q., Wang, Q., Li, Q., Wang, H., Xu, Z., ... & Zhou, L. (2019). Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries. Nanoscale, 11(22), 10984-10991 is available at https://doi.org/10.1039/c9nr01440cen_US
dc.titleTwo-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage10984en_US
dc.identifier.epage10991en_US
dc.identifier.volume11en_US
dc.identifier.issue22en_US
dc.identifier.doi10.1039/c9nr01440cen_US
dcterms.abstractIn this paper, silicon nanosheets (Si-NSs) are chemically synthesized by using graphene oxide nanosheets as the template. The obtained Si-NSs, which are aggregations of silicon nanocrystals with a size of ∼10 nm, are applied directly as the anode material for lithium ion batteries, delivering a reversible capacity of 800 mA h g-1 after 900 cycles at a rate as high as 8400 mA g-1. Ex situ measurements and in situ observations show the positive effect of the mesoporous structure on the structural stability of Si-NSs. The evolution and survivability of the porous structures during lithiation and delithiation processes are investigated by molecular dynamics simulations, demonstrating that the porous structure can enhance the amount of "active" Li atoms during the stable stage of cycling and therefore promote mass capacity. The longer the survival of the porous structure, the longer the high mass capacity can be retained.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNanoscale, 14 June 2019, v. 11, no. 22, p. 10984-10991en_US
dcterms.isPartOfNanoscaleen_US
dcterms.issued2019-06-14-
dc.identifier.scopus2-s2.0-85067060355-
dc.identifier.pmid31140516-
dc.identifier.eissn2040-3372en_US
dc.description.validate202209_bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0443-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextFok Ying Tung Education Foundation; National Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20537604-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tang_Two-Dimensional_Porous_Silicon.pdfPre-Published version1 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

70
Last Week
0
Last month
Citations as of Sep 22, 2024

Downloads

130
Citations as of Sep 22, 2024

SCOPUSTM   
Citations

59
Citations as of Sep 26, 2024

WEB OF SCIENCETM
Citations

53
Citations as of Sep 26, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.