Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95572
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorGuo, Xen_US
dc.creatorFu, Qen_US
dc.date.accessioned2022-09-22T06:13:55Z-
dc.date.available2022-09-22T06:13:55Z-
dc.identifier.issn0049-1241en_US
dc.identifier.urihttp://hdl.handle.net/10397/95572-
dc.language.isoenen_US
dc.publisherSAGE Publicationsen_US
dc.rights© The Author(s) 2022en_US
dc.rightsThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).en_US
dc.rightsThe following publication Guo, X., & Fu, Q. (2024). The Design and Optimality of Survey Counts: A Unified Framework Via the Fisher Information Maximizer. Sociological Methods & Research, 53(3), 1319-1349 is available at https://doi.org/10.1177/00491241221113877.en_US
dc.subjectGrouped and right-censored counten_US
dc.subjectModified Poisson estimatoren_US
dc.subjectOptimum experimental designen_US
dc.subjectFisher Information Maximizeren_US
dc.subjectSurvey methodologyen_US
dc.titleThe design and optimality of survey counts : a unified framework via the fisher information maximizeren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1319en_US
dc.identifier.epage1349en_US
dc.identifier.volume53en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1177/00491241221113877en_US
dcterms.abstractGrouped and right-censored (GRC) counts have been used in a wide range of attitudinal and behavioural surveys yet they cannot be readily analyzed or assessed by conventional statistical models. This study develops a unified regression framework for the design and optimality of GRC counts in surveys. To process infinitely many grouping schemes for the optimum design, we propose a new two-stage algorithm, the Fisher Information Maximizer (FIM), which utilizes estimates from generalized linear models to find a global optimal grouping scheme among all possible (Formula presented.) -group schemes. After we define, decompose, and calculate different types of regressor-specific design errors, our analyses from both simulation and empirical examples suggest that: 1) the optimum design of GRC counts is able to reduce the grouping error to zero, 2) the performance of modified Poisson estimators using GRC counts can be comparable to that of Poisson regression, and 3) the optimum design is usually able to achieve the same estimation efficiency with a smaller sample size.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSociological methods and research, Aug. 2024, v. 53, no. 3, p. 1319-1349en_US
dcterms.isPartOfSociological methods and researchen_US
dcterms.issued2024-08-
dc.identifier.scopus2-s2.0-85135760094-
dc.identifier.eissn1552-8294en_US
dc.description.validate202209 bcfcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberRGC-B2-0548 [Non-PolyU]-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Guo_Design_Optimality_Survey.pdf649.88 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

75
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

15
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Jan 9, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.