Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95433
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorFang, Yen_US
dc.creatorXue, Yen_US
dc.creatorHui, Len_US
dc.creatorYu, Hen_US
dc.creatorZhang, Cen_US
dc.creatorHuang, Ben_US
dc.creatorLi, Yen_US
dc.date.accessioned2022-09-19T02:00:53Z-
dc.date.available2022-09-19T02:00:53Z-
dc.identifier.issn2198-3844en_US
dc.identifier.urihttp://hdl.handle.net/10397/95433-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.rights© 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Fang, Y., Xue, Y., Hui, L., Yu, H., Zhang, C., Huang, B., & Li, Y. (2022). Graphdiyne‐Induced Iron Vacancy for Efficient Nitrogen Conversion. Advanced Science, 9(2), 2102721 is available at https://doi.org/10.1002/advs.202102721.en_US
dc.titleGraphdiyne-induced iron vacancy for efficient nitrogen conversionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume9en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1002/advs.202102721en_US
dcterms.abstractAn iron vacancy-rich ferroferric oxide/graphdiyne heterostructure (IVR-FO/GDY) is rationally designed and fabricated for high-efficiency electrocatalytic nitrogen fixation to ammonia (ENFA). Experimental and theoretical results show that the GDY-induced iron vacancies in IVR-FO/GDY promote the electrocatalysis, and activate the local O sites to transfer electrons towards GDY to boost ENFA, resulting in promising electrocatalytic performances with a highest ammonia yield (YNH3) of 134.02 µg h−1 mgcat.−1 and Faradaic efficiency (FE) of up to 60.88%, as well as the high long-term stability in neutral electrolytes. The cationic vacancy activation strategy proposed in this work has strong general and universal guiding significance to the design of new efficient electrocatalysts for various electrochemical energy conversion reactions. Such defect engineering may be used efficiently in electrocatalysis, leading to the development and progress of energy industry.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvanced science, 14 Jan. 2022, v. 9, no. 2, 2102721en_US
dcterms.isPartOfAdvanced scienceen_US
dcterms.issued2022-01-14-
dc.identifier.scopus2-s2.0-85118564973-
dc.identifier.pmid34747572-
dc.identifier.ros2021003758-
dc.identifier.artn2102721en_US
dc.description.validate202209 bchyen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCDCF_2021-2022-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Research and Development Project of China; National Nature Science Foundation of China; Chinese Academy of Sciencesen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS70677178-
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Fang_Graphdiyne-Induced_Iron_Vacancy.pdf4.6 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

70
Last Week
0
Last month
Citations as of Sep 22, 2024

Downloads

195
Citations as of Sep 22, 2024

SCOPUSTM   
Citations

35
Citations as of Sep 26, 2024

WEB OF SCIENCETM
Citations

35
Citations as of Sep 26, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.