Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95334
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorPhotonics Research Centreen_US
dc.contributorDepartment of Electrical Engineeringen_US
dc.creatorAdeel, Men_US
dc.creatorTejedor, Jen_US
dc.creatorMacias-Guarasa, Jen_US
dc.creatorLu, Cen_US
dc.date.accessioned2022-09-19T01:59:45Z-
dc.date.available2022-09-19T01:59:45Z-
dc.identifier.issn1041-1135en_US
dc.identifier.urihttp://hdl.handle.net/10397/95334-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication M. Adeel, J. Tejedor, J. Macias-Guarasa and C. Lu, "Improved Perturbation Detection in Direct Detected φ-OTDR Systems using Matched Filtering," in IEEE Photonics Technology Letters, vol. 31, no. 21, pp. 1689-1692, 1 Nov.1, 2019 is available at https://doi.org/10.1109/LPT.2019.2940297.en_US
dc.subjectDistributed acoustic sensingen_US
dc.subjectPerturbation detectionen_US
dc.subjectPhase-OTDRen_US
dc.titleImproved perturbation detection in direct detected φ-OTDR systems using matched filteringen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1689en_US
dc.identifier.epage1692en_US
dc.identifier.volume31en_US
dc.identifier.issue21en_US
dc.identifier.doi10.1109/LPT.2019.2940297en_US
dcterms.abstractNuisance Alarm Rate (NAR) is critical in φ-OTDR perturbation detection systems. We present in this letter a novel matched filtering-based feature extractor which aims to noise reduction so that the detection system gets improved performance. This feature extractor requires a small number of data vectors to be acquired which is combined with a random forest-based machine learning strategy to significantly reduce the NAR. In addition, since the number of data vectors is small, this system can also be useful for time-sensitive detection applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE photonics technology letters, 1 Nov. 2019, v. 31, no. 21, 8830461, p. 1689-1692en_US
dcterms.isPartOfIEEE photonics technology lettersen_US
dcterms.issued2019-11-01-
dc.identifier.scopus2-s2.0-85077686620-
dc.identifier.eissn1941-0174en_US
dc.identifier.artn8830461en_US
dc.description.validate202209 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-0359-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Improved_Perturbation_Detection.pdfPre-Published version1.26 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

68
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

73
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

12
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.