Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95328
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical Engineeringen_US
dc.contributorPhotonics Research Centreen_US
dc.contributorMainland Development Officeen_US
dc.creatorZhao, Pen_US
dc.creatorHo, HLen_US
dc.creatorJin, Wen_US
dc.creatorFan, Sen_US
dc.creatorGao, Sen_US
dc.creatorWang, Yen_US
dc.date.accessioned2022-09-19T01:59:42Z-
dc.date.available2022-09-19T01:59:42Z-
dc.identifier.issn0146-9592en_US
dc.identifier.urihttp://hdl.handle.net/10397/95328-
dc.language.isoenen_US
dc.publisherOptical Society of Americaen_US
dc.rights©2021 Optical Society of Americaen_US
dc.rights© 2021 Optica Publishing Group. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.en_US
dc.rightsThe following publication Pengcheng Zhao, Hoi Lut Ho, Wei Jin, Shangchun Fan, Shoufei Gao, and Yingying Wang, "Hollow-core fiber photothermal methane sensor with temperature compensation," Opt. Lett. 46, 2762-2765 (2021) is available at https://doi.org/10.1364/OL.426812.en_US
dc.titleHollow-core fiber photothermal methane sensor with temperature compensationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2762en_US
dc.identifier.epage2765en_US
dc.identifier.volume46en_US
dc.identifier.issue11en_US
dc.identifier.doi10.1364/OL.426812en_US
dcterms.abstractWe demonstrate a high sensitivity all-fiber spectroscopic methane sensor based on photothermal interferometry. With a 2.4-m-long anti-resonant hollow-core fiber, a 1654 nm distributed feedback laser, and a Raman fiber amplifier, a noise-equivalent concentration of ~4.3 ppb methane is achieved at the room temperature and pressure of ~1 bar. The effects of temperature on the photothermal phase modulation as well as the stability of the interferometer are studied. By introducing a temperature-dependent compensation factor and stabilizing the interferometer at quadrature, signal instability of ~2.1% is demonstrated for temperature variation from 296 to 373 K.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationOptics letters, 1 June 2021, v. 46, no. 11, p. 2762-2765en_US
dcterms.isPartOfOptics lettersen_US
dcterms.issued2021-06-01-
dc.identifier.scopus2-s2.0-85106666775-
dc.identifier.pmid34061107-
dc.identifier.eissn1539-4794en_US
dc.description.validate202209 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-0299, EE-0024-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Local Innovative and Research Teams Project of Guangdong Pear River Talents Program; Hong Kong Polytechnic University; Program for Changjiang Scholars and Innovative Research Team in Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS53848143-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hollow-core_Fiber_Photothermal.pdfPre-Published version3.07 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

87
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

149
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

20
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.