Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95325
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.creatorWong, PTWen_US
dc.creatorLai, WWLen_US
dc.date.accessioned2022-09-19T01:59:41Z-
dc.date.available2022-09-19T01:59:41Z-
dc.identifier.issn0195-9298en_US
dc.identifier.urihttp://hdl.handle.net/10397/95325-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10921-021-00836-z.en_US
dc.subjectConcreteen_US
dc.subjectGPR wave dispersionen_US
dc.subjectGround penetrating radaren_US
dc.subjectNumerical simulationen_US
dc.titleCharacterization of complex dielectric permittivity of concrete by GPR numerical simulation and spectral analysisen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume41en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1007/s10921-021-00836-zen_US
dcterms.abstractIn this paper, we present a numerical finite-difference time-domain (FDTD) simulation procedure developed to quantify the frequency-dependent ground penetrating radar (GPR) spectral responses occurring in four on-site scenarios involving concrete that is dry, half-saturated, saturated and chloride- contaminated. The responses are (1) numerically simulated by making use of the real and imaginary parts of complex permittivity derived from the GPR signal’s two-way travel time and rebar reflection amplitude, respectively; then (2) characterized using Nyquist and Bode plots, and (3) compared to the wavelets obtained from authentic concrete specimens. The characterization shows good correspondence with the well-established Debye’s models. Experimental validation shows that the simulated dispersion model is compatible with authentic concrete specimens when an optimal centre frequency is used. The method demonstrated in this paper can be used to convert GPR into a spectral analyser for predicting the on-site variability in material properties, the expected depth ranges of targets, and levels of attenuation and scattering before actual GPR survey.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of nondestructive evaluation, Mar. 2022, v. 41, no. 1, 1en_US
dcterms.isPartOfJournal of nondestructive evaluationen_US
dcterms.issued2022-03-
dc.identifier.scopus2-s2.0-85119597927-
dc.identifier.eissn1573-4862en_US
dc.identifier.artn1en_US
dc.description.validate202209 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-0875-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Characterization_Complex_Dielectric.pdfPre-Published Version2.48 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

105
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

155
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

8
Citations as of Apr 24, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.