Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95320
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorChen, YLen_US
dc.creatorJin, WLen_US
dc.creatorXiao, YFen_US
dc.creatorZhang, Xen_US
dc.date.accessioned2022-09-14T08:33:09Z-
dc.date.available2022-09-14T08:33:09Z-
dc.identifier.issn2331-7019en_US
dc.identifier.urihttp://hdl.handle.net/10397/95320-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.rights© 2016 American Physical Societyen_US
dc.rightsThe following publication Chen, Y. L., Jin, W. L., Xiao, Y. F., & Zhang, X. (2016). Measuring the charge of a single dielectric nanoparticle using a high-Q optical microresonator. Physical Review Applied, 6(4), 044021 is available at https://doi.org/10.1103/PhysRevApplied.6.044021.en_US
dc.titleMeasuring the charge of a single dielectric nanoparticle using a high-Q optical microresonatoren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume6en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1103/PhysRevApplied.6.044021en_US
dcterms.abstractMeasuring the charge of a nanoparticle is of great importance in many fields including optics, astronomy, biochemistry, atmospheric science, environmental engineering, and dusty plasma. Here, we propose to use a high-Q whispering-gallery-mode (WGM) optical microresonator to detect the surface and bulk charge of a dielectric nanoparticle. Because of the modification of nanoparticle conductivity induced by the surplus electrons, both the coupling strength between the nanoparticle and the WGM and the dissipation changes compared with the case of a neutral nanoparticle. The charge density can be inferred from the transmission spectrum of the WGM microresonator. By monitoring the mode splitting, the linewidth broadening or the resonance dip value of the transmission spectrum, surface (bulk) electron density as low as 0.007 nm-2 (0.001 nm-3) can be detected for nanoparticles with negative (positive) electron affinity. The high sensitivity is attributed to the ultranarrow resonance linewidth and small mode volume of the microresonator.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysical review applied, Oct. 2016, v. 6, no. 4, 44021en_US
dcterms.isPartOfPhysical review applieden_US
dcterms.issued2016-10-
dc.identifier.scopus2-s2.0-84994293322-
dc.identifier.artn44021en_US
dc.description.validate202209 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberRGC-B2-0952, AP-0743-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Science Foundation of China ; The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6692689-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
PhysRevApplied.6.044021.pdf920.23 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

110
Last Week
0
Last month
Citations as of Nov 10, 2025

Downloads

129
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

30
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

7
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.