Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95296
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorXu, Len_US
dc.creatorZhao, Hen_US
dc.creatorSun, Men_US
dc.creatorHuang, Ben_US
dc.creatorWang, Jen_US
dc.creatorXia, Jen_US
dc.creatorLi, Nen_US
dc.creatorYin, Den_US
dc.creatorLuo, Men_US
dc.creatorLuo, Fen_US
dc.creatorDu, Yen_US
dc.creatorYan, Cen_US
dc.date.accessioned2022-09-14T08:33:01Z-
dc.date.available2022-09-14T08:33:01Z-
dc.identifier.issn1433-7851en_US
dc.identifier.urihttp://hdl.handle.net/10397/95296-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.rights© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheimen_US
dc.rightsThis is the peer reviewed version of the following article: L. Xu, H. Zhao, M. Sun, B. Huang, J. Wang, J. Xia, N. Li, D. Yin, M. Luo, F. Luo, Y. Du, C. Yan, Oxygen Vacancies on Layered Niobic Acid That Weaken the Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries, Angew. Chem. Int. Ed. 2019, 58, 11491, which has been published in final form at https://doi.org/10.1002/anie.201905852. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.en_US
dc.subjectCatalytic conversionen_US
dc.subjectElectrochemistryen_US
dc.subjectLi-S batteriesen_US
dc.subjectNiobic aciden_US
dc.subjectOxygen vacanciesen_US
dc.titleOxygen vacancies on layered niobic acid that weaken the catalytic conversion of polysulfides in lithium–sulfur batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage11491en_US
dc.identifier.epage11496en_US
dc.identifier.volume58en_US
dc.identifier.issue33en_US
dc.identifier.doi10.1002/anie.201905852en_US
dcterms.abstractOxygen vacancies are usually considered to be beneficial in catalytic conversion of polysulfides in lithium–sulfur batteries. Now it is demonstrated that the conversion of polysulfides was hindered by oxygen vacancies on ultrathin niobic acid. The inferior performance induced by the oxygen vacancy was mainly attributed to the decreased electric conductivity as well as the weakened adsorption of polysulfides on the catalyst surface. This work shows that the care should be taken when designing a new catalyst for the lithium–sulfur battery using a defect-engineering strategy.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAngewandte chemie international edition, 12 Aug. 2019, v. 58, no. 33, p. 11491-11496en_US
dcterms.isPartOfAngewandte chemie international editionen_US
dcterms.issued2019-08-12-
dc.identifier.scopus2-s2.0-85068889704-
dc.identifier.pmid31206953-
dc.identifier.eissn1521-3773en_US
dc.description.validate202209 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-1371, ABCT-0366en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextChina National Funds for Excellent Young Scientists; National Key R&D Program of China; 111 Project; National Nature Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS24987886en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Oxygen_Vacancies_Layered.pdfPre-Published version1.74 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

85
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

130
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

117
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

126
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.