Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95282
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorLiu, Yen_US
dc.creatorBai, Gen_US
dc.creatorLyu, Yen_US
dc.creatorHua, Yen_US
dc.creatorYe, Ren_US
dc.creatorZhang, Jen_US
dc.creatorChen, Len_US
dc.creatorXu, Sen_US
dc.creatorHao, Jen_US
dc.date.accessioned2022-09-14T08:32:58Z-
dc.date.available2022-09-14T08:32:58Z-
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://hdl.handle.net/10397/95282-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2020 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsnano.0c07547.en_US
dc.subject2D nanosheetsen_US
dc.subjectLanthanide phosphorsen_US
dc.subjectMulticoloren_US
dc.subjectTemperature sensingen_US
dc.subjectZnSeen_US
dc.titleUltrabroadband tuning and fine structure of emission spectra in lanthanide Er-doped ZnSe nanosheets for display and temperature sensingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage16003en_US
dc.identifier.epage16012en_US
dc.identifier.volume14en_US
dc.identifier.issue11en_US
dc.identifier.doi10.1021/acsnano.0c07547en_US
dcterms.abstractRealizing multicolored luminescence in two-dimensional (2D) nanomaterials would afford potential for a range of next-generation nanoscale optoelectronic devices. Moreover, combining fine structured spectral line emission and detection may further enrich the studies and applications of functional nanomaterials. Herein, a lanthanide doping strategy has been utilized for the synthesis of 2D ZnSe:Er3+ nanosheets to achieve fine-structured, multicolor luminescence spectra. Simultaneous upconversion and downconversion emission is realized, which can cover an ultrabroadband optical range, from ultraviolet through visible to the near-infrared region. By investigating the low-temperature fine structure of emission spectra at 4 K, we have observed an abundance of sublevel electronic energy transitions, elucidating the electronic structure of Er3+ ions in the 2D ZnSe nanosheet. As the temperature is varied, these nanosheets exhibit tunable multicolored luminescence under 980 and 365 nm excitation. Utilizing the distinct sublevel transitions of Er3+ ions, the developed 2D ZnSe:Er3+ optical temperature sensor shows high absolute (15.23% K-1) and relative sensitivity (8.61% K-1), which is superior to conventional Er3+-activated upconversion luminescent nanothermometers. These findings imply that Er3+-doped ZnSe nanomaterials with direct and wide band gap have the potential for applications in future low-dimensional photonic and sensing devices at the 2D limit.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS nano, 24 Nov. 2020, v. 14, no. 11, p. 16003-16012en_US
dcterms.isPartOfACS nanoen_US
dcterms.issued2020-11-24-
dc.identifier.scopus2-s2.0-85096511683-
dc.identifier.pmid33185085-
dc.identifier.eissn1936-086Xen_US
dc.description.validate202209 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-0530, AP-0107-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China , the Fundamental Research Funds for the Provincial Universities of Zhejiang and Science and Technology Innovation Platform and Talent Plan of Zhejiangen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50669870-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ultrabroadband_Tuning_Fine.pdfPre-Published version2.48 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

85
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

209
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

82
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

80
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.