Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95279
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorChen, Zen_US
dc.creatorJu, Men_US
dc.creatorSun, Men_US
dc.creatorJin, Len_US
dc.creatorCai, Ren_US
dc.creatorWang, Zen_US
dc.creatorDong, Len_US
dc.creatorPeng, Len_US
dc.creatorLong, Xen_US
dc.creatorHuang, Ben_US
dc.creatorYang, Sen_US
dc.date.accessioned2022-09-14T08:32:58Z-
dc.date.available2022-09-14T08:32:58Z-
dc.identifier.issn1433-7851en_US
dc.identifier.urihttp://hdl.handle.net/10397/95279-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.rights© 2021 Wiley-VCH GmbHen_US
dc.rightsThis is the peer reviewed version of the following article: Z. Chen, M. Ju, M. Sun, L. Jin, R. Cai, Z. Wang, L. Dong, L. Peng, X. Long, B. Huang, S. Yang, TM LDH Meets Birnessite: A 2D-2D Hybrid Catalyst with Long-Term Stability for Water Oxidation at Industrial Operating Conditions. Angew. Chem. Int. Ed. 2021, 60, 9699, which has been published in final form at https://doi.org/10.1002/anie.202016064. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.en_US
dc.subjectElectrocatalysisen_US
dc.subjectHybrid catalystsen_US
dc.subjectHydrogen productionen_US
dc.subjectTwo-dimensional layered materialsen_US
dc.subjectWater oxidationen_US
dc.titleTM LDH meets Birnessite : a 2D-2D hybrid catalyst with long-term stability for water oxidation at industrial operating conditionsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage9699en_US
dc.identifier.epage9705en_US
dc.identifier.volume60en_US
dc.identifier.issue17en_US
dc.identifier.doi10.1002/anie.202016064en_US
dcterms.abstractEfficient noble-metal free electrocatalyst for oxygen evolution reaction (OER) is critical for large-scale hydrogen production via water splitting. Inspired by Nature's oxygen evolution cluster in photosystem II and the highly efficient artificial OER catalyst of NiFe layered double hydroxide (LDH), we designed an electrostatic 2D-2D assembly route and successfully synthesized a 2D LDH(+)-Birnessite(−) hybrid. The as-constructed LDH(+)-Birnessite(−) hybrid catalyst showed advanced catalytic activity and excellent stability towards OER under a close to industrial hydrogen production condition (85 °C and 6 M KOH) for more than 20 h at the current densities larger than 100 mA cm−2. Experimentally, we found that besides the enlarged interlayer distance, the flexible interlayer NiFe LDH(+) also modulates the electronic structure of layered MnO2, and creates an electric field between NiFe LDH(+) and Birnessite(−), wherein OER occurs with a greatly decreased overpotential. DFT calculations confirmed the interlayer LDH modulations of the OER process, attributable to the distinct electronic distributions and environments. Upshifting the Fe-3d orbitals in LDH promotes electron transfer from the layered MnO2 to LDH, significantly boosting up the OER performance. This work opens a new way to fabricate highly efficient OER catalyst for industrial water oxidation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAngewandte chemie international edition, 19 Apr. 2021, v. 60, no. 17, p. 9699-9705en_US
dcterms.isPartOfAngewandte chemie international editionen_US
dcterms.issued2021-04-19-
dc.identifier.scopus2-s2.0-85102655295-
dc.identifier.pmid33484038-
dc.identifier.eissn1521-3773en_US
dc.description.validate202209 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-1333, ABCT-0122-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Shenzhen Peacock Plan; Shenzhen Science and Technology Innovation Commission; Nanshan Pilot Planen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50657761-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
TM_LDH_Meets.pdfPre-Published version1.99 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

92
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

341
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

107
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

99
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.