Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95265
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorHuang, Ben_US
dc.creatorSun, Men_US
dc.date.accessioned2022-09-14T08:32:55Z-
dc.date.available2022-09-14T08:32:55Z-
dc.identifier.issn1463-9076en_US
dc.identifier.urihttp://hdl.handle.net/10397/95265-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © the Owner Societies 2017en_US
dc.rightsThe following publication Huang, B., & Sun, M. (2017). Energy conversion modeling of the intrinsic persistent luminescence of solids via energy transfer paths between transition levels. Physical Chemistry Chemical Physics, 19(14), 9457–9469 is available at https://doi.org/10.1039/C7CP01056G.en_US
dc.titleEnergy conversion modeling of the intrinsic persistent luminescence of solids via energy transfer paths between transition levelsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage9457en_US
dc.identifier.epage9469en_US
dc.identifier.volume19en_US
dc.identifier.issue14en_US
dc.identifier.doi10.1039/c7cp01056gen_US
dcterms.abstractAn energy conversion model has been established for the intrinsic persistent luminescence in solids related to the native point defect levels, formations, and transitions. In this study, we showed how the recombination of charge carriers between different defect levels along the zero phonon line (ZPL) can lead to energy conversions supporting the intrinsic persistent phosphorescence in solids. This suggests that the key driving force for this optical phenomenon is the pair of electrons hopping between different charged defects with negative-Ueff. Such a negative correlation energy will provide a sustainable energy source for electron-holes to further recombine in a new cycle with a specific quantum yield. This will help us to understand the intrinsic persistent luminescence with respect to native point defect levels as well as the correlations of electronics and energetics.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysical chemistry chemical physics, 14 Apr. 2017, v. 19, no. 14, p. 9457-9469en_US
dcterms.isPartOfPhysical chemistry chemical physicsen_US
dcterms.issued2017-04-14-
dc.identifier.scopus2-s2.0-85019764266-
dc.identifier.pmid28333170-
dc.identifier.eissn1463-9084en_US
dc.description.validate202209 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-1313, ABCT-0693en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNatural Science Foundation of China (NSFC) for the Youth Scientist grant; initial start-up grant support from the Department General Research Fund (Dept. GRF) from ABCT in the Hong Kong Polytechnic University (PolyU)en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6748817en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_Energy_Conversion_Modeling.pdfPre-Published version816.37 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

71
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

43
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

10
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

10
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.