Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95253
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technology-
dc.creatorSun, Men_US
dc.creatorHe, Qen_US
dc.creatorKuang, Xen_US
dc.creatorZhang, Qen_US
dc.creatorYe, Sen_US
dc.creatorHuang, Ben_US
dc.date.accessioned2022-09-14T08:32:51Z-
dc.date.available2022-09-14T08:32:51Z-
dc.identifier.issn2211-2855en_US
dc.identifier.urihttp://hdl.handle.net/10397/95253-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2018 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Sun, M., He, Q., Kuang, X., Zhang, Q., Ye, S., & Huang, B. (2018). Probing oxide-ion conduction in low-temperature SOFCs. Nano Energy, 50, 88-96 is available at https://doi.org/10.1016/j.nanoen.2018.05.026.en_US
dc.subjectAnion-Frenkel pairen_US
dc.subjectDFTen_US
dc.subjectDopanten_US
dc.subjectLa2Mo2O9en_US
dc.subjectSOFCsen_US
dc.subjectUC luminescenceen_US
dc.titleProbing oxide-ion conduction in low-temperature SOFCsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage88en_US
dc.identifier.epage96en_US
dc.identifier.volume50en_US
dc.identifier.doi10.1016/j.nanoen.2018.05.026en_US
dcterms.abstractNowadays, by no means fortuitous, pollution-free and bio-regenerative solid oxide fuel cells (SOFCs) have arisen to be a competitive candidate as next generation renewable energy, which exhibiting high energy efficiency and flexible fuel choices. However, fast oxide-ion transportation of electrolyte could only be ensured in high working temperature by conventional views, which can decrease the voltage loss and further determine the electrical performance of SOFCs. Herein we report an in-situ and non-contact method to monitor the working condition of SOFCs and it is potential to become a promising optical temperature sensor to detect the working temperature of electrolyte materials. With the combinative protocol between density functional theory calculation and upconversion (UC) luminescence, the entanglement between thermal-driven formed O-ion Frenkel pair (native solubilizer) and Bi3+ dopant (competitive inhibitor) in La2Mo2O9 derivatives has been unraveled, especially at a lower temperature required by a future SOFCs device. It is a potential route for screening and characterizing the candidate electrolyte onsets in lower temperature without sacrificing electrical performance.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano energy, Aug. 2018, v. 50, p. 88-96en_US
dcterms.isPartOfNano energyen_US
dcterms.issued2018-08-
dc.identifier.scopus2-s2.0-85047081742-
dc.identifier.eissn2211-3282en_US
dc.description.validate202209 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-1380, ABCT-0516en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNatural Science Foundation of China; initial start-up grant support from the Department General Research Fund (Dept. GRF) from ABCT in the Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6839615en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Sun_Probing_Oxide-Ion_Conduction.pdfPre-Published version3.84 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

79
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

101
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

30
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

24
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.