Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95238
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorLi, Cen_US
dc.creatorHuang, Ben_US
dc.creatorLuo, Men_US
dc.creatorQin, Yen_US
dc.creatorSun, Yen_US
dc.creatorLi, Yen_US
dc.creatorYang, Yen_US
dc.creatorWu, Den_US
dc.creatorLi, Men_US
dc.creatorGuo, Sen_US
dc.date.accessioned2022-09-14T08:32:48Z-
dc.date.available2022-09-14T08:32:48Z-
dc.identifier.issn0926-3373en_US
dc.identifier.urihttp://hdl.handle.net/10397/95238-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2019 Published by Elsevier B.V.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Li, C., Huang, B., Luo, M., Qin, Y., Sun, Y., Li, Y., ... & Guo, S. (2019). An efficient ultrathin PtFeNi Nanowire/Ionic liquid conjugate electrocatalyst. Applied Catalysis B: Environmental, 256, 117828 is available at https://doi.org/10.1016/j.apcatb.2019.117828.en_US
dc.subjectEletrocatalysisen_US
dc.subjectH2O2 detectionen_US
dc.subjectMethanol oxidation reactionen_US
dc.subjectOxygen-reduction reactionen_US
dc.subjectUltrathin nanowireen_US
dc.titleAn efficient ultrathin PtFeNi nanowire/ionic liquid conjugate electrocatalysten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume256en_US
dc.identifier.doi10.1016/j.apcatb.2019.117828en_US
dcterms.abstractBoosting the rate of oxygen reduction reaction (ORR) on Pt surface is essential to the commercialization of proton exchange membrane fuel cells (PEMFCs), which has thus stimulated tremendous efforts in pursuing the optimized oxygen adsorption strength and maximizing the Pt utilization regarding the composition, architecture and surface geometry. Further activity enhancement necessitates strategies other than solely inner/surface tuning of metallic nanocrystals, which yet remains scarce. Applying ultrathin PtFeNi trimetallic nanowires (NWs) as the model catalyst, we herein demonstrate the PtFeNi/ionic liquid (IL) conjugate system can greatly boost the ORR rate on Pt surface. The IL conjugated ultrathin PtFeNi NWs (IL/PtFeNi NWs) achieves an impressive mass activity of 2.83 A mg−1Pt, which is 1.72 and 15.5 times higher than the PtFeNi NWs and benchmark Pt/C, respectively. Furthermore, the IL conjugation also improved the durability during the accelerated stability tests when compared to the non-conjugated counterpart. The combination of experimental characterizations and theoretical calculations reveal that the enhanced catalytic performance derives from the IL-induced flexible electronic layer for even modification of the surface activity. The ultrathin IL/PtFeNi interface NWs also show the remarkable performances towards the electro-oxidation of methanol and the H2O2 detection. The present interfacial engineering strategy offers a new opportunity to realize further electrocatalytic activity enhancements for future renewable energy applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied catalysis B : environmental, 5 Nov. 2019, v. 256, 117828en_US
dcterms.isPartOfApplied catalysis B : environmentalen_US
dcterms.issued2019-11-05-
dc.identifier.scopus2-s2.0-85067572540-
dc.identifier.eissn1873-3883en_US
dc.identifier.artn117828en_US
dc.description.validate202209 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-1373, ABCT-0338en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextBeijing Natural Science Foundation; National Natural Science Foundation of China; National Basic Research Program of China; National Basic Research Program of China; China Postdoctoral Science Foundation; Open Project Foundation of State Key Laboratory of Chemical Resource Engineering; start-up supports from Peking University; Young Thousand Talented Programen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS24988267en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_Efficient_Ultrathin_Ptfeni.pdfPre-Published version1.85 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

86
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

91
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

51
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

42
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.