Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95218
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorOu, Xen_US
dc.creatorQin, Xen_US
dc.creatorHuang, Ben_US
dc.creatorZan, Jen_US
dc.creatorWu, Qen_US
dc.creatorHong, Zen_US
dc.creatorXie, Len_US
dc.creatorBian, Hen_US
dc.creatorYi, Zen_US
dc.creatorChen, Xen_US
dc.creatorWu, Yen_US
dc.creatorSong, Xen_US
dc.creatorLi, Jen_US
dc.creatorChen, Qen_US
dc.creatorYang, Hen_US
dc.creatorLiu, Xen_US
dc.date.accessioned2022-09-14T08:32:44Z-
dc.date.available2022-09-14T08:32:44Z-
dc.identifier.issn0028-0836en_US
dc.identifier.urihttp://hdl.handle.net/10397/95218-
dc.language.isoenen_US
dc.publisherNature Publishing Groupen_US
dc.rightsCopyright © 2021, The Author(s), under exclusive licence to Springer Nature Limiteden_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s41586-021-03251-6en_US
dc.titleHigh-resolution X-ray luminescence extension imagingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage410en_US
dc.identifier.epage415en_US
dc.identifier.volume590en_US
dc.identifier.issue7846en_US
dc.identifier.doi10.1038/s41586-021-03251-6en_US
dcterms.abstractCurrent X-ray imaging technologies involving flat-panel detectors have difficulty in imaging three-dimensional objects because fabrication of large-area, flexible, silicon-based photodetectors on highly curved surfaces remains a challenge1–3. Here we demonstrate ultralong-lived X-ray trapping for flat-panel-free, high-resolution, three-dimensional imaging using a series of solution-processable, lanthanide-doped nanoscintillators. Corroborated by quantum mechanical simulations of defect formation and electronic structures, our experimental characterizations reveal that slow hopping of trapped electrons due to radiation-triggered anionic migration in host lattices can induce more than 30 days of persistent radioluminescence. We further demonstrate X-ray luminescence extension imaging with resolution greater than 20 line pairs per millimetre and optical memory longer than 15 days. These findings provide insight into mechanisms underlying X-ray energy conversion through enduring electron trapping and offer a paradigm to motivate future research in wearable X-ray detectors for patient-centred radiography and mammography, imaging-guided therapeutics, high-energy physics and deep learning in radiology.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNature, 18 Feb. 2021, v. 590, no. 7846, p. 410-415en_US
dcterms.isPartOfNatureen_US
dcterms.issued2021-02-18-
dc.identifier.scopus2-s2.0-85101104301-
dc.identifier.pmid33597760-
dc.identifier.eissn1476-4687en_US
dc.description.validate202209 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-1318, ABCT-0153en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key and Program of China; National Natural Science Foundation of China; Research Institute for Smart Energy of the Hong Kong Polytechnic University, Agency for Science, Technology and Research; NUS NanoNash Programme; National Research Foundation; Prime Minister’s Office of Singapore under its NRF Investigatorship Programmeen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50658711en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_High-Resolution_X-Ray_Luminescence.pdfPre-Published version3.89 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

123
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

1,134
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

689
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

672
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.