Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95217
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorWang, Yen_US
dc.creatorTao, Sen_US
dc.creatorLin, Hen_US
dc.creatorWang, Gen_US
dc.creatorZhao, Ken_US
dc.creatorCai, Ren_US
dc.creatorTao, Ken_US
dc.creatorZhang, Cen_US
dc.creatorSun, Men_US
dc.creatorHu, Jen_US
dc.creatorHuang, Ben_US
dc.creatorYang, Sen_US
dc.date.accessioned2022-09-14T08:32:43Z-
dc.date.available2022-09-14T08:32:43Z-
dc.identifier.issn2211-2855en_US
dc.identifier.urihttp://hdl.handle.net/10397/95217-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2020 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Wang, Y., Tao, S., Lin, H., Wang, G., Zhao, K., Cai, R., ... & Yang, S. (2021). Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor. Nano Energy, 81, 105606 is available at https://doi.org/10.1016/j.nanoen.2020.105606.en_US
dc.subjectLayered double hydroxideen_US
dc.subjectMethyl-isorhodanateen_US
dc.subjectMultivacanciesen_US
dc.subjectOxygen evolution reactionen_US
dc.subjectTargeted atomsen_US
dc.titleAtomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchoren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume81en_US
dc.identifier.doi10.1016/j.nanoen.2020.105606en_US
dcterms.abstractThe fabrication of porous structure in the ultrathin materials still faces high difficulties. In particular, the precise modulations in the porosity and size are highly challenging. In this work, we have introduced small molecules to overcome such a challenge. And this substantially contributes to the energy related applications, especially to the water-energy (WE) treatment. Electrocatalytic water-splitting is hindered by the sluggish kinetics of water oxidation, requiring efficient earth-abundant electrocatalysts for the oxygen evolution reaction (OER). Herein we demonstrate the robust OER activity by introducing metal and oxygen multivacancies in noble-metal-free layered double hydroxides (LDHs) through the specific electron-withdrawing organic molecule methyl-isorhodanate (CH3NCS). Our work reveals that the metal and oxygen vacancies endow NiFe LDH with enhanced electron transfer and modulate the H2O adsorption, thereby boosting the OER electrocatalytic properties. Remarkably, the best-performing laminar NiFe LDH nanosheets with metal and oxygen multivacancies (v-L-LDHs) show an ultra-low overpotential of 230 mV at 100 mA cm−2 and Tafel slope of 37.1 mV dec−1. Density functional theory (DFT) has revealed the improved OER performance is realized by the co-existence of metal and O vacancies in NiFe LDH, where the defective region activates the electroactivity of Ni sites and O sites to promote the electron transfer and intermediate transformation. The Fe sites play a key role to preserve the high electroactivity of the Ni sites in long-term applications. The superior OER performance underpins the high potential of the reported facile organic anchor strategy for designing and synthesizing advanced electrocatalysts in both LDH and other potential 2D layered materials.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano energy, Mar. 2021, v. 81, 105606en_US
dcterms.isPartOfNano energyen_US
dcterms.issued2021-03-
dc.identifier.scopus2-s2.0-85097420669-
dc.identifier.eissn2211-3282en_US
dc.identifier.artn105606en_US
dc.description.validate202209 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-1321, ABCT-0147en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextChina Postdoctoral Fund; Shenzhen Peacock Plan Program; Nanshan Pilot Plan; HK Innovation and Technology Fund; National Nature Science Foundation of China; Yunnan provinceen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50659525en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Sun_Atomically_Targeting_Nife.pdfPre-Published version3.06 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

100
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

598
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

322
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

237
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.