Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95154
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorZhang, Men_US
dc.creatorLi, QMen_US
dc.creatorZhang, JCen_US
dc.creatorZheng, GPen_US
dc.creatorWang, XYen_US
dc.date.accessioned2022-09-14T08:32:26Z-
dc.date.available2022-09-14T08:32:26Z-
dc.identifier.issn0925-8388en_US
dc.identifier.issn0925-8388-
dc.identifier.urihttp://hdl.handle.net/10397/95154-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2019 Elsevier B.V. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Zhang, M., Li, Q. M., Zhang, J. C., Zheng, G. P., & Wang, X. Y. (2019). The prominent combination of ultrahigh strength and superior tensile plasticity in Cu–Zr nanoglass connected by oxide interfaces: a molecular dynamics study. Journal of Alloys and Compounds, 801, 318-326 is available at https://doi.org/10.1016/j.jallcom.2019.06.097.en_US
dc.subjectInterfaceen_US
dc.subjectMolecular dynamicsen_US
dc.subjectNanoglassen_US
dc.subjectOxidationen_US
dc.subjectShear transformationen_US
dc.titleThe prominent combination of ultrahigh strength and superior tensile plasticity in Cu–Zr nanoglass connected by oxide interfaces : a molecular dynamics studyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage318en_US
dc.identifier.epage326en_US
dc.identifier.volume801en_US
dc.identifier.doi10.1016/j.jallcom.2019.06.097en_US
dcterms.abstractA novel Cu–Zr nanoglass consisting of glassy nano-cells connected by oxide interfaces is proposed. Compared to conventional nanoglasses, the novel oxide-connected nanoglass presents ultrahigh tensile strength and superior tensile plasticity at ambient temperature. Subjected to tensile loading, the oxide interfaces are found to promote the nucleation of shear transformation zones (STZs) due to the existence of excess free volume. Meanwhile, the strong bonding between metallic and oxygen atoms in the oxide interface makes it difficult for STZs to propagate through. Thus, the STZs are effectively proliferated and confined inside the cell interior without any mature shear band (SB) formed. The results provide new ideas for toughening metallic glasses with a decent combination of plasticity and strength, thus making it possible to overcome the longstanding strength-ductility trade-off dilemma.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of alloys and compounds, 15 Sept 2019, v. 801, p. 318-326en_US
dcterms.isPartOfJournal of alloys and compoundsen_US
dcterms.issued2019-09-15-
dc.identifier.scopus2-s2.0-85067234021-
dc.identifier.eissn1873-4669-
dc.description.validate202209 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-0306, ME-0398-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Science Fund for Distinguished Young Scholars of China; National Natural Science Foundation of China; China Postdoctoral Science Foundationen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Prominent_Combination_Ultrahigh.pdfPre-Published version2.14 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

82
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

85
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

22
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.