Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95084
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorQian, Jen_US
dc.creatorDong, Yen_US
dc.date.accessioned2022-09-14T08:19:59Z-
dc.date.available2022-09-14T08:19:59Z-
dc.identifier.issn0888-3270en_US
dc.identifier.urihttp://hdl.handle.net/10397/95084-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Qian, J., & Dong, Y. (2022). Uncertainty and multi-criteria global sensitivity analysis of structural systems using acceleration algorithm and sparse polynomial chaos expansion. Mechanical Systems and Signal Processing, 163, 108120 is available at https://dx.doi.org/10.1016/j.ymssp.2021.108120.en_US
dc.subjectAcceleration algorithmen_US
dc.subjectMulti-criteria global sensitivity analysisen_US
dc.subjectSparse polynomial chaos expansionen_US
dc.subjectStructural systemsen_US
dc.subjectUncertainty quantificationen_US
dc.titleUncertainty and multi-criteria global sensitivity analysis of structural systems using acceleration algorithm and sparse polynomial chaos expansionen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: Uncertainty and multi-criteria global sensitivity analysis of structural systems using sparse polynomial chaos expansion and acceleration algorithmen_US
dc.identifier.volume163en_US
dc.identifier.doi10.1016/j.ymssp.2021.108120en_US
dcterms.abstractSparse polynomial chaos expansion (PCE) can be used to emulate the stochastic model output where the original model is computationally expensive. It is a powerful tool in efficient uncertainty quantification and sensitivity analysis. Structural systems are usually associated with high dimensional and probabilistic input. The number of candidate basis functions increases significantly with input dimension, resulting in high computational burden for establishing sparse PCE. In this study, acceleration techniques are integrated to formulate an algorithm for efficient computation of sparse PCE (ASPCE). The integrated algorithm can improve efficiency of computational process compared with conventional greedy algorithm while ensuring the satisfying predictive performance. Once the sparse PCE model is obtained, the statistic moments, probability density function of stochastic output, and global sensitivity index could be computed efficiently. Traditional PCE based global sensitivity analysis only assesses the sensitivity on individual structural performance criterion. Assessing the global sensitivity considering multiple criteria is challenging as the sensitive parameters may not be consistent for different performance criteria. To address this issue, a two-stage multi-criteria global sensitivity analysis algorithm is proposed by coupling ASPCE and the technique for order preference by similarity to ideal solution (TOPSIS). A holistic global sensitivity index is proposed to identify the sensitive parameters incorporating multiple performance criteria. In order to illustrate the efficiency, accuracy, and applicability of the proposed approach, two illustrative cases are presented.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMechanical systems and signal processing, 15 Jan. 2022, v. 163, 108120en_US
dcterms.isPartOfMechanical systems and signal processingen_US
dcterms.issued2022-01-15-
dc.identifier.scopus2-s2.0-85107736964-
dc.identifier.eissn1096-1216en_US
dc.identifier.artn108120en_US
dc.description.validate202209 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-0026-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNNSFCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS52720499-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Qian_Uncertainty_Multi-Criteria_Global.pdfPre-Published version1.5 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

108
Last Week
1
Last month
Citations as of Nov 9, 2025

Downloads

100
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

21
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

21
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.