Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95013
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorJian, Aen_US
dc.creatorBai, Gen_US
dc.creatorCui, Yen_US
dc.creatorWei, Cen_US
dc.creatorLiu, Xen_US
dc.creatorZhang, Qen_US
dc.creatorSang, Sen_US
dc.creatorZhang, Xen_US
dc.date.accessioned2022-09-09T01:08:16Z-
dc.date.available2022-09-09T01:08:16Z-
dc.identifier.issn0030-4018en_US
dc.identifier.urihttp://hdl.handle.net/10397/95013-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2018 Elsevier B.V. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Jian, A., Bai, G., Cui, Y., Wei, C., Liu, X., Zhang, Q., ... & Zhang, X. (2018). Optical and quantum models of resonant optical tunneling effect. Optics Communications, 428, 191-199 is available at https://doi.org/10.1016/j.optcom.2018.07.047en_US
dc.subjectOptical tunnelingen_US
dc.subjectQuantum opticsen_US
dc.subjectResonant optical tunneling effecten_US
dc.subjectTotal internal reflectionen_US
dc.titleOptical and quantum models of resonant optical tunneling effecten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage191en_US
dc.identifier.epage199en_US
dc.identifier.volume428en_US
dc.identifier.doi10.1016/j.optcom.2018.07.047en_US
dcterms.abstractResonant optical tunneling effect (ROTE) is a special phenomenon that light can fully go through the seemingly impenetrable optical structure. It is a prominent example to study the analogy of wave optics and quantum physics. Previous theoretical work mostly focused on the optical modeling of transmission spectrum using the transfer matrix method (TMM), but put little effort in the quantum model. This paper advances the optical modeling by using the finite-difference time-domain method (FDTD) to simulate the electric field distribution and by using the plane wave expansion (PWE) to predict the optical bandgap. Moreover, we present the first analytical quantum model of the ROTE and further derive a direct expression of the transmission peak positions. This expression cannot be derived by the optical models, but its predicted peak positions match the optical modeling results using the FDTD, the PWE and the TMM. This well demonstrates the merit of the quantum analogy for analyzing the optical systems. This work may inspire the transplantation of the established ideas and designs in the quantum field into the optical field to create new optical and photonic devices.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationOptics communications, 1 Dec. 2018, v. 428, p. 191-199en_US
dcterms.isPartOfOptics communicationsen_US
dcterms.issued2018-12-01-
dc.identifier.scopus2-s2.0-85050796601-
dc.identifier.eissn1873-0310en_US
dc.description.validate202209 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0415-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Natural Science Foundation of China; The Shanxi Provincial Foundation for Returned Scholars; 863 project; Excellent Talents Technology Innovation Program of Shanxi Province; Hundreds of Talents of Shanxi Provinceen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS54312937-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Optical_Quantum_Models.pdfPre-Published version1.79 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

119
Last Week
0
Last month
Citations as of Nov 10, 2025

Downloads

1,857
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

8
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

6
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.