Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95011
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorZheng, Men_US
dc.creatorSun, Hen_US
dc.creatorChan, MKen_US
dc.creatorKwok, KWen_US
dc.date.accessioned2022-09-09T01:08:16Z-
dc.date.available2022-09-09T01:08:16Z-
dc.identifier.issn2211-2855en_US
dc.identifier.urihttp://hdl.handle.net/10397/95011-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2018 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Zheng, M., Sun, H., Chan, M. K., & Kwok, K. W. (2019). Reversible and nonvolatile tuning of photoluminescence response by electric field for reconfigurable luminescent memory devices. Nano Energy, 55, 22-28 is available at https://doi.org/10.1016/j.nanoen.2018.10.055en_US
dc.subjectFerroelastic strainen_US
dc.subjectNonvolatileen_US
dc.subjectPhotoluminescenceen_US
dc.subjectPMN-PTen_US
dc.subjectReversibleen_US
dc.titleReversible and nonvolatile tuning of photoluminescence response by electric field for reconfigurable luminescent memory devicesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage22en_US
dc.identifier.epage28en_US
dc.identifier.volume55en_US
dc.identifier.doi10.1016/j.nanoen.2018.10.055en_US
dcterms.abstractLuminescent materials with reversibly tunable ability under external stimuli, e.g., strain and electric field, are of great interest for developing advanced multifunctional optical devices. An important problem that has not been solved is the nonvolatility of field-driven switching for information storage applications. Here, we first propose a design principle that the electrically induced ferroelastic domain engineering in 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 substrates can be used to achieve robust nonvolatile tuning of photoluminescence performance in elastically-coupled Pr-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 thin films in a reversible way. Such a nonvolatile and reversible response is striking, which stems from the intermediate lateral-polarization-induced stable strain state in the substrate during domain switching. The quantitative determination of strain-mediated photoluminescence intensity is also addressed by virtue of the converse piezoelectric effect. This study points to an effective strategy for realizing piezo-luminescent effect in ferroelectric thin-film heterostructures and demonstrates great potentials in designing reconfigurable, low-power nonvolatile luminescent memory devices.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano energy, Jan. 2019, v. 55, p. 22-28en_US
dcterms.isPartOfNano energyen_US
dcterms.issued2019-01-
dc.identifier.scopus2-s2.0-85055742961-
dc.identifier.eissn2211-3282en_US
dc.description.validate202209 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0401-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universiten_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS13244749-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zheng_Reversible_Nonvolatile_Tuning.pdfPre-Published version3.56 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

60
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

108
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

48
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

41
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.