Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95009
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorZhai, Len_US
dc.creatorMak, CHen_US
dc.creatorQian, Jen_US
dc.creatorLin, Sen_US
dc.creatorLau, SPen_US
dc.date.accessioned2022-09-09T01:08:15Z-
dc.date.available2022-09-09T01:08:15Z-
dc.identifier.issn0013-4686en_US
dc.identifier.urihttp://hdl.handle.net/10397/95009-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2019 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Zhai, L., Mak, C. H., Qian, J., Lin, S., & Lau, S. P. (2019). Self-reconstruction mechanism in NiSe2 nanoparticles/carbon fiber paper bifunctional electrocatalysts for water splitting. Electrochimica Acta, 305, 37-46 is available at https://doi.org/10.1016/j.electacta.2019.03.031en_US
dc.subjectBifunctional electrocatalysten_US
dc.subjectHydrogen evolution reactionen_US
dc.subjectNickel diselenideen_US
dc.subjectOxygen evolution reactionen_US
dc.subjectWater splittingen_US
dc.titleSelf-reconstruction mechanism in NiSe2 nanoparticles/carbon fiber paper bifunctional electrocatalysts for water splittingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage37en_US
dc.identifier.epage46en_US
dc.identifier.volume305en_US
dc.identifier.doi10.1016/j.electacta.2019.03.031en_US
dcterms.abstractDeveloping efficient bifunctional electrocatalysts and gaining fundamental understanding of reaction mechanisms are crucial for practical water splitting. Herein, a bifunctional NiSe 2 nanoparticles/carbon fiber paper (NSN/CFP) electrode is fabricated by the pyrolysis of Ni(NO 3 ) 2 on CFP, followed by a selenization step. The as-prepared electrocatalysts exhibit superior overall water splitting behavior in 1 M KOH with low overpotentials of 145 mV and 280 mV at current densities of 10 mA cm −2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) respectively, comparable to the performance of 20% Pt/C and RuO 2 . Detailed compositional and morphological studies reveal that the NiSe 2 gradually transforms into an amorphous Ni(OH) 2 /NiOOH heterojunction during both HER and OER in alkaline medium. Based on these experimental results, an oxidation-induced self-reconstruction mechanism is proposed. Owing to the highly-oxidized Ni(OH) 2 /NiOOH active species, the self-reconstructed structure enhances the water splitting under fixed potentials for a prolonged time of 96 h with negligible current degradation. This work not only provides a facile route to fabricate efficient and stable electrocatalysts for large-scale water splitting but also reveals an underlying structural evolution mechanism, which guides the rational design of heterogeneous catalysts.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationElectrochimica acta, 10 May 2019, v. 305, p. 37-46en_US
dcterms.isPartOfElectrochimica actaen_US
dcterms.issued2019-05-10-
dc.identifier.scopus2-s2.0-85063113714-
dc.description.validate202209 bcfc-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0349-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20344714-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhai_Self-Reconstruction_Mechanism_Nise.pdfPre-Published version1.77 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

68
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

74
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

59
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

53
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.