Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95003
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorXue, Yen_US
dc.creatorZhang, Yen_US
dc.creatorWang, Hen_US
dc.creatorLin, Sen_US
dc.creatorLi, Yen_US
dc.creatorDai, JYen_US
dc.creatorLau, SPen_US
dc.date.accessioned2022-09-09T01:08:13Z-
dc.date.available2022-09-09T01:08:13Z-
dc.identifier.issn0957-4484en_US
dc.identifier.urihttp://hdl.handle.net/10397/95003-
dc.language.isoenen_US
dc.publisherInstitute of Physics Publishingen_US
dc.rights© 2020 IOP Publishing Ltden_US
dc.rightsThis manuscript version is made available under the CC-BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/)en_US
dc.rightsThe following publication Xue, Y., Zhang, Y., Wang, H., Lin, S., Li, Y., Dai, J. Y., & Lau, S. P. (2020). Thickness-dependent magnetotransport properties in 1T VSe2 single crystals prepared by chemical vapor deposition. Nanotechnology, 31(14), 145712 is available at https://doi.org/10.1088/1361-6528/ab6478en_US
dc.subjectCharge density waveen_US
dc.subjectChemical vapor depositionen_US
dc.subjectMagnetoresistanceen_US
dc.subjectVanadium diselenideen_US
dc.subjectWeak antilocalizationen_US
dc.titleThickness-dependent magnetotransport properties in 1T VSe2 single crystals prepared by chemical vapor depositionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume31en_US
dc.identifier.issue14en_US
dc.identifier.doi10.1088/1361-6528/ab6478en_US
dcterms.abstractTwo-dimensional (2D) metallic transition metal dichalcogenides (TMDs) exhibit fascinating quantum effects, such as charge-density-wave (CDW) and weak antilocalization (WAL) effect. Herein, low temperature synthesis of 1T phase VSe2 single crystals with thickness ranging from 3 to 41 nm by chemical vapor deposition (CVD) is reported. The VSe2 shows a decreasing phase transition temperature of the CDW when the thickness is decreased. Moreover, low-temperature magnetotransport measurements demonstrate a linear positive and non-saturating magnetoresistance (MR) of 35% from a 35 nm thick VSe2 at 15 T and 2 K due to CDW induce mobility fluctuations. Surprisingly, Kohler's rule analysis of the MR reveals the non-applicability of Kohler's rule for temperature above 50 K indicating that the MR behavior cannot be described in terms of semiclassical transport on a single Fermi surface with a single scattering time. Furthermore, WAL effect is observed in the 4.2 nm thick VSe2 at low magnetic fields at 2 K, revealing the contribution of the quantum interference effect at the 2D limit. The phase coherence length and spin-orbit scattering length were determined to be 73 nm and 18 nm at 2 K, respectively. Our work opens new avenues to study the fundamental quantum phenomena in CVD-deposited TMDs.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNanotechnology, 3 Apr. 2020, v. 31, no. 14, 145712en_US
dcterms.isPartOfNanotechnologyen_US
dcterms.issued2020-04-03-
dc.identifier.scopus2-s2.0-85078550092-
dc.identifier.pmid31860893-
dc.identifier.eissn1361-6528en_US
dc.identifier.artn145712en_US
dc.description.validate202209 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0244-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS22182604-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xue_Thickness-Dependent_Magnetotransport_Properties.pdfPre-Published version1.81 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

83
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

163
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

24
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

24
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.