Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94997
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorZhao, YQ-
dc.creatorZhang, H-
dc.creatorCai, XB-
dc.creatorGuo, W-
dc.creatorJi, DX-
dc.creatorZhang, TT-
dc.creatorGu, ZB-
dc.creatorZhou, J-
dc.creatorZhu, Y-
dc.creatorNie, YF-
dc.date.accessioned2022-09-09T01:08:11Z-
dc.date.available2022-09-09T01:08:11Z-
dc.identifier.issn1674-1056en_US
dc.identifier.urihttp://hdl.handle.net/10397/94997-
dc.language.isoenen_US
dc.publisherInstitute of Physics Publishingen_US
dc.rights© 2021 Chinese Physical Society and IOP Publishing Ltden_US
dc.rightsThis manuscript version is made available under the CC-BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/)en_US
dc.rightsThe following publication Zhao, Y. Q., Zhang, H., Cai, X. B., Guo, W., Ji, D. X., Zhang, T. T., ... & Nie, Y. F. (2021). Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films. Chinese Physics B, 30(8), 087401 is available at https://doi.org/10.1088/1674-1056/abea97en_US
dc.titleEpitaxial growth and transport properties of compressively-strained Ba2IrO4 filmsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume30en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1088/1674-1056/abea97en_US
dcterms.abstractBa2IrO4 is a sister compound of the widely investigated Sr2IrO4 and has no IrO6 octahedral rotation nor net canted antiferromagnetic moment, thus it acts as a system more similar to the high-T c cuprate. In this work, we synthesize the Ba2IrO4 epitaxial films by reactive molecular beam epitaxy and study their crystalline structure and transport properties under biaxial compressive strain. High resolution scanning transmission electron microscopy and x-ray diffraction confirm the high quality of films with partial strain relaxation. Under compressive epitaxial strain, the Ba2IrO4 exhibits the strain-driven enhancement of the conductivity, consistent with the band gap narrowing and the stronger hybridization of Ir-t2g and O-2p orbitals predicted in the first-principles calculations.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationChinese physics B, Aug. 2021, v. 30, no. 8, 087401en_US
dcterms.isPartOfChinese physics Ben_US
dcterms.issued2021-08-
dc.identifier.scopus2-s2.0-85112863801-
dc.identifier.eissn1741-4199en_US
dc.identifier.artn087401en_US
dc.description.validate202209 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0018-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (Grant Nos. 11774153, 11861161004, 51772143, 11974163, and 51672125); the National Key Research and Development Program of China (Grant No. 2016YFA0201104), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 0213-14380167 and 0213-14380198)en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS55105230-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ji_Epitaxial_Growth_Transport.pdfPre-Published version1.37 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

89
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

99
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.