Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94862
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Chinese and Bilingual Studiesen_US
dc.creatorJiang, MQen_US
dc.creatorLee, SYMen_US
dc.creatorLiu, Hen_US
dc.creatorLi, SSen_US
dc.date.accessioned2022-08-30T07:33:13Z-
dc.date.available2022-08-30T07:33:13Z-
dc.identifier.issn1002-137Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/94862-
dc.language.isozhen_US
dc.publisher重庆西南信息有限公司en_US
dc.rights© 2019 中国学术期刊电子杂志出版社。本内容的使用仅限于教育、科研之目的。en_US
dc.rights© 2019 China Academic Journal Electronic Publishing House. It is to be used strictly for educational and research purposes.en_US
dc.subjectQuestion-answering texten_US
dc.subjectSentiment analysisen_US
dc.subjectAttention mechanismen_US
dc.title面向问答文本的属性级情感分类研究en_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage5en_US
dc.identifier.epage8en_US
dc.identifier.volume46en_US
dc.identifier.issue11Aen_US
dcterms.abstractThe goal of conditional sentiment analysis is getting the sentiment polarity of whole text, which is a coarse task. Recently, with the improved technology, the sentiment analysis task is also refined, and the researchers hope to get sentiment polarity of given target of the text. This paper's purpose is getting the sentiment polarity of product at-tribute on question-answer text. To perform attribute sentiment classification towards QA text pair, this paper proposed a novel approach based on attention mechanism. Firstly, this paper concatenated the attribute information on answer words' vectors. Secondly, this paper leveraged LSTM models to encode the question text and answer text. Thirdly, this paper got the relation of question and answer by using attention mechanism and got the whole feature of answer. Finally, this paper got the result of whole feature by using classifier. Empirical studies demonstrate the effectiveness of the proposed approach to attribute sentiment classification towards question-answering text.en_US
dcterms.abstract传统情感分析任务的目的是分析整个文本的情感极性,这是一种粗粒度的任务。近年来,随着技术的革新,情感分析任务也在不断细化,研究者们希望能获取关于文本中具体对象的情感极性。文中的研究任务是获取问答文本中关于产品属性的情感极性。针对问答文本的属性级情感分析问题,提出了一种基于注意力机制的方法。首先,将属性信息拼接到答案词向量上;其次,对答案文本和问题文本学习一个 LSTM 模型;然 后,通过注意力机制获得问题文本和答案文本的相关性,并根据相关性的重要程度获取答案文本的整体特征;最后,通过分类器输出最终的整体特征结果。实验结果表明,所提方法优于传统的属性级情感分析方法。en_US
dcterms.accessRightsopen accessen_US
dcterms.alternativeAttribute sentiment classification towards question-answering texten_US
dcterms.bibliographicCitation计算机科学 (Computer Science), Nov. 2019, v. 46, no. 11A, p. 5-8en_US
dcterms.isPartOf计算机科学 (Computer Science)en_US
dcterms.issued2019-11-
dc.description.validate202208 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera1345, RGC-B2-1184, CBS-0196en_US
dc.identifier.SubFormID44651-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingText国家自然科学基金(61672366)en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS26106264en_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Jiang_Sentiment_Classification_Question-Answering.pdf478.6 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

124
Last Week
0
Last month
Citations as of Oct 6, 2025

Downloads

469
Citations as of Oct 6, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.