Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94861
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Chinese and Bilingual Studiesen_US
dc.creatorLee, SYMen_US
dc.creatorLau, HYPen_US
dc.date.accessioned2022-08-30T07:33:13Z-
dc.date.available2022-08-30T07:33:13Z-
dc.identifier.isbn979-1-095-54634-4en_US
dc.identifier.urihttp://hdl.handle.net/10397/94861-
dc.language.isoenen_US
dc.publisherEuropean Language Resources Association (ELRA)en_US
dc.rights© European Language Resources Association (ELRA), licensed under CC-BY-NCen_US
dc.rightsThe LREC 2020 Proceedings are licensed under a Creative Commons Attribution Non-Commercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/)en_US
dc.rightsThe following publication Sophia Yat Mei Lee and Helena Yan Ping Lau. 2020. An Event-comment Social Media Corpus for Implicit Emotion Analysis. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 1633–1642, Marseille, France. European Language Resources Association is available at https://aclanthology.org/2020.lrec-1.203/.en_US
dc.subjectCorpusen_US
dc.subjectExplicit emotionen_US
dc.subjectImplicit emotionen_US
dc.titleAn event-comment social media corpus for implicit emotion analysisen_US
dc.typeConference Paperen_US
dc.identifier.spage1633en_US
dc.identifier.epage1642en_US
dcterms.abstractThe classification of implicit emotions in text has always been a great challenge to emotion processing. Even though the majority of emotion expressed implicitly, most previous attempts at emotions have focused on the examination of explicit emotions. The poor performance of existing emotion identification and classification models can partly be attributed to the disregard of implicit emotions. In view of this, this paper presents the development of a Chinese event-comment social media emotion corpus. The corpus deals with both explicit and implicit emotions with more emphasis being placed on the implicit ones. This paper specifically describes the data collection and annotation of the corpus. An annotation scheme has been proposed for the annotation of emotion-related information including the emotion type, the emotion cause, the emotion reaction, the use of rhetorical question, the opinion target (i.e. the semantic role in an event that triggers an emotion), etc. Corpus data shows that the annotated items are of great value to the identification of implicit emotions. We believe that the corpus will be a useful resource for both explicit and implicit emotion classification and detection as well as event classification.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, ... & S. Piperidis (Eds.), Proceedings of the Twelfth Language Resources and Evaluation Conference, p. 1633-1642. France: European Language Resources Association, 2020en_US
dcterms.issued2020-05-
dc.identifier.scopus2-s2.0-85096523940-
dc.relation.ispartofbookProceedings of the Twelfth Language Resources and Evaluation Conferenceen_US
dc.description.validate202208 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera1345, CBS-0123-
dc.identifier.SubFormID44650-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyU Research Granten_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS26162405-
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
2020.lrec-1.203.pdf895.05 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

127
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

59
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Jun 21, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.