Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94808
PIRA download icon_1.1View/Download Full Text
Title: Phase-field modeling of mechano–chemical-coupled stress-corrosion cracking
Authors: Lin, C
Ruan, H 
Issue Date: Nov-2021
Source: Electrochimica acta, 1 Nov. 2021, v. 395, 139196
Abstract: A mechano–chemical coupling phase-field model is proposed to investigate stress-corrosion cracking (SCC). It is demonstrated that pit-to-crack transition occurs when the relative-rate parameter, κv > 1, which characterizes the critical scenario where stress-induced degradation occurs faster than electrochemical dissolution. Moreover, an exponential relationship between the stress intensity factor and cracking velocity is revealed, and it indicates an autocatalytic process resulting from the accelerations of stress and corrosion. We provide further details regarding the variation in the electrochemical environment, effect of mechanical loading, and significant role of the initial geometry in promoting SCC. The results obtained are useful for assessing critical structures in corrosive environments.
Keywords: Mechano–chemical Coupling
Phase-field model
Stress-corrosion cracking
Publisher: Elsevier
Journal: Electrochimica acta 
ISSN: 0013-4686
DOI: 10.1016/j.electacta.2021.139196
Rights: © 2021 Elsevier Ltd. All rights reserved.
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.
The following publication Lin, C., & Ruan, H. (2021). Phase-field modeling of mechano–chemical-coupled stress-corrosion cracking. Electrochimica Acta, 395, 139196 is available at https://dx.doi.org/10.1016/j.electacta.2021.139196.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Lin_Phase-Field_Modeling_Mechano–Chemical-Coupled.pdfPre-Published version4.18 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

82
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

197
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

31
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

20
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.