Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94731
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorLin, Cen_US
dc.creatorLiu, Ken_US
dc.creatorRuan, Hen_US
dc.creatorWang, Ben_US
dc.date.accessioned2022-08-30T07:29:04Z-
dc.date.available2022-08-30T07:29:04Z-
dc.identifier.issn0264-1275en_US
dc.identifier.urihttp://hdl.handle.net/10397/94731-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Lin, C., Liu, K., Ruan, H., & Wang, B. (2022). Mechano-electrochemical phase field modeling for formation and modulation of dendritic Pattern: Application to uranium recovery from spent nuclear fuel. Materials & Design, 213, 110322 is available at https://dx.doi.org/10.1016/j.matdes.2021.110322en_US
dc.subjectDendritic formation and modulationen_US
dc.subjectMechano-electrochemical couplingen_US
dc.subjectPhase field modelingen_US
dc.titleMechano-electrochemical phase field modeling for formation and modulation of dendritic pattern : application to uranium recovery from spent nuclear fuelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume213en_US
dc.identifier.doi10.1016/j.matdes.2021.110322en_US
dcterms.abstractDendrite formation is a critical issue in uranium recovery from spent nuclear fuel (SNF) through a molten-salt electrorefining process. To understand and modulate uranium dendritic formation, we developed a computation model that involves all the complexities in the mechano-electrochemical process, such as diffusion–reaction kinetics, interfacial anisotropy and the variations of electric and stress fields. In particular, the lattice mismatch between deposit and substrate is considered which addressed the importance of cathode material. The model explains various morphologies of dendrites, which in a two-dimensional scenario can be demarcated based on the perimeter-to-area ratio, χ/S. Dendrites can be needle-like, tooth-like, or tree-like when χ/S < 2 mm−1, 2 mm−1 ≤ χ/S < 6 mm−1, and χ/S ≥ 6 mm−1, respectively. With these conditions, the parameter maps for modulating dendritic patterns are drawn to elucidate the effects of interfacial anisotropy, nuclei site geometry, diffusivity, electric and stress fields, which can be employed to design a molten-salt electroplating process to minimize failures caused by dendrite formation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaterials and design, Jan. 2022, v. 213, 110322en_US
dcterms.isPartOfMaterials and designen_US
dcterms.issued2022-01-
dc.identifier.scopus2-s2.0-85121427979-
dc.identifier.eissn1873-4197en_US
dc.identifier.artn110322en_US
dc.description.validate202208 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera1442-
dc.identifier.SubFormID45009-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0264127521008777-main.pdf3.5 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

139
Last Week
7
Last month
Citations as of Nov 9, 2025

Downloads

117
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

21
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.