Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94642
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorHuang, Zen_US
dc.creatorLi, Hen_US
dc.creatorLi, Wen_US
dc.creatorLiu, Jen_US
dc.creatorHuang, Cen_US
dc.creatorYang, Zen_US
dc.creatorFang, Wen_US
dc.date.accessioned2022-08-25T01:54:17Z-
dc.date.available2022-08-25T01:54:17Z-
dc.identifier.urihttp://hdl.handle.net/10397/94642-
dc.language.isoenen_US
dc.publisherMolecular Diversity Preservation International (MDPI)en_US
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attributio+n (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Huang, Z.; Li, H.; Li, W.; Liu, J.; Huang, C.; Yang, Z.; Fang, W. A New Trajectory Tracking Algorithm for Autonomous Vehicles Based on Model Predictive Control. Sensors 2021, 21, 7165 is available at https://doi.org/10.3390/s21217165.en_US
dc.subjectAutonomous drivingen_US
dc.subjectModel predictive controlen_US
dc.subjectReal-time controlen_US
dc.subjectTrajectory trackingen_US
dc.titleA new trajectory tracking algorithm for autonomous vehicles based on model predictive controlen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume21en_US
dc.identifier.issue21en_US
dc.identifier.doi10.3390/s21217165en_US
dcterms.abstractTrajectory tracking is a key technology for precisely controlling autonomous vehicles. In this paper, we propose a trajectory-tracking method based on model predictive control. Instead of using the forward Euler integration method, the backward Euler integration method is used to es-tablish the predictive model. To meet the real-time requirement, a constraint is imposed on the control law and the warm-start technique is employed. The MPC-based controller is proved to be stable. The simulation results demonstrate that, at the cost of no or a little increase in computational time, the tracking performance of the controller is much better than that of controllers using the forward Euler method. The maximum lateral errors are reduced by 69.09%, 47.89% and 78.66%. The real-time performance of the MPC controller is good. The calculation time is below 0.0203 s, which is shorter than the control period.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSensors, Nov. 2021, v. 21, no. 21, 7165en_US
dcterms.isPartOfSensorsen_US
dcterms.issued2021-11-
dc.identifier.scopus2-s2.0-85117942739-
dc.identifier.eissn1424-8220en_US
dc.identifier.artn7165en_US
dc.description.validate202208 bcwwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberISE-1045-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China, Grant number No. 62003328 and the China Postdoctoral Science Foundation, Grant No. 2020M682985en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS58244197-
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
sensors-21-07165-v2.pdf52.29 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

46
Last Week
0
Last month
Citations as of Oct 13, 2024

Downloads

47
Citations as of Oct 13, 2024

SCOPUSTM   
Citations

20
Citations as of Oct 17, 2024

WEB OF SCIENCETM
Citations

15
Citations as of Oct 17, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.