Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/94278
Title: | Automatic detection of individual oil palm trees from UAV images using HOG features and an SVM classifier | Authors: | Wang, Y Zhu, X Wu, B |
Issue Date: | 2019 | Source: | International journal of remote sensing, 2019, v. 40, no. 19, p. 7356-7370 | Abstract: | Oil palm trees are important economic crops in tropical areas. Accurate knowledge of the number of oil palm trees in a plantation area is important to predict the yield of palm oil, manage the growing situation of the palm trees and maximise their productivity. In this study, we propose a novel automatic method for detection and enumeration of individual oil palm trees using images from unmanned aerial vehicles (UAVs). This method required three major steps. First, images from UAVs were classified as vegetation or non-vegetation by the support vector machine (SVM) classifier. Second, a feature descriptor based on the histogram of oriented gradient (HOG) was designed for palm trees and used to extract features for machine learning. Finally, a SVM classifier was trained and optimised using the HOG features from positive (i.e., oil palm trees) and negative samples (i.e., objects other than oil palm trees). The trained classifier was then applied to detect individual oil palm trees using adaptive moving windows that allowed it to also return the crown size of each oil palm tree. The method was trained at one site and validated independently at four other sites with different situations. The overall accuracy of palm tree detection was 99.21% at the training site and 99.39%, 99.06%, 99.90% and 94.63% at the four validation sites; the last one was for the most challenging site, in which palm trees were mixed with other trees. These tests confirm the effectiveness of the proposed method. The simplicity and great efficiency of the proposed method allow it to support oil palm tree counting for large areas using imagery from UAVs. | Publisher: | Taylor & Francis | Journal: | International journal of remote sensing | ISSN: | 0143-1161 | EISSN: | 1366-5901 | DOI: | 10.1080/01431161.2018.1513669 | Rights: | © 2018 Informa UK Limited, trading as Taylor & Francis Group This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Remote Sensing on 6 Sep 2018 (Published online), available online: http://www.tandfonline.com/10.1080/01431161.2018.1513669 |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Wang_UAV_HOG_SVM.pdf | Pre-Published version | 2.83 MB | Adobe PDF | View/Open |
Page views
88
Last Week
0
0
Last month
Citations as of Apr 14, 2025
Downloads
199
Citations as of Apr 14, 2025
SCOPUSTM
Citations
106
Citations as of May 15, 2025
WEB OF SCIENCETM
Citations
77
Citations as of Oct 10, 2024

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.