Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94187
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorBello, ITen_US
dc.creatorYu, Nen_US
dc.creatorZhai, Sen_US
dc.creatorSong, Yen_US
dc.creatorZhao, Sen_US
dc.creatorCheng, Cen_US
dc.creatorZhang, Zen_US
dc.creatorNi, Men_US
dc.date.accessioned2022-08-11T01:07:42Z-
dc.date.available2022-08-11T01:07:42Z-
dc.identifier.issn0272-8842en_US
dc.identifier.urihttp://hdl.handle.net/10397/94187-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2022 Elsevier Ltd and Techna Group S.r.l. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Bello, I. T., Yu, N., Zhai, S., Song, Y., Zhao, S., Cheng, C., Zhang, Z., & Ni, M. (2022). Effect of engineered lattice contraction and expansion on the performance and CO2 tolerance of Ba0.5Sr0.5Co0.7Fe0.3O3-δ functional material for intermediate temperature solid oxide fuel cells. Ceramics International, 48(15), 21457-21468 is available at https://dx.doi.org/10.1016/j.ceramint.2022.04.110.en_US
dc.subjectCathodeen_US
dc.subjectCO2 toleranceen_US
dc.subjectLattice contraction and expansionen_US
dc.subjectOxygen reduction reaction activityen_US
dc.subjectSolid oxide fuel cellsen_US
dc.titleEffect of engineered lattice contraction and expansion on the performance and CO2 tolerance of Ba0.5Sr0.5Co0.7Fe0.3O3-δ functional material for intermediate temperature solid oxide fuel cellsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage21457en_US
dc.identifier.epage21468en_US
dc.identifier.volume48en_US
dc.identifier.issue15en_US
dc.identifier.doi10.1016/j.ceramint.2022.04.110en_US
dcterms.abstractBarium Strontium Cobalt Iron Oxide (BSCF) is a famous cathode material for solid oxide fuel cells (SOFCs) due to its excellent catalytic activity for oxygen reduction reaction (ORR) at intermediate and low operating temperatures. Its poor stability, however, in a CO2-containing environment limits its practical application. In this study, we systematically investigate the effects of instigating lattice contraction and expansion on the performance and CO2 tolerance of Ba0.5Sr0.5Co0.7Fe0.3O3-δ (BSCF) air electrode functional material. We strategically substituted 5 mol.% Fe–B-site cations of BSCF with transition metals (TMs), i.e., Zn and Cu, to achieve lattice expansion and contraction, respectively. The Ba0.5Sr0.5Co0.7Fe0.25Cu0.05O3-δ (BSCFC5) cathode, where lattice contraction occurred, exhibits the best performance with an area-specific resistance (ASR) of 0.0247 Ω cm2 and a high peak power density (PPD) of 1715 mW cm−2 at 650 °C for the symmetrical and single cells, respectively. The functional material also exhibits enhanced tolerance to CO2 compared to BSCF by surviving several rounds of 10% CO2 injection and ejection for an overall nonstop testing period of 100 h. The improved ORR, stability, and CO2 tolerance instigated by lattice contraction in BSCF provides an insight into the adoption of this approach in achieving optimal desirable properties in SOFC cathode functional materials.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCeramics international, Aug. 2022, v. 48, no. 15, p. 21457-21468en_US
dcterms.isPartOfCeramics internationalen_US
dcterms.issued2022-08-
dc.identifier.scopus2-s2.0-85128903917-
dc.identifier.eissn1873-3956en_US
dc.description.validate202208 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1642-
dc.identifier.SubFormID45723-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Bello_Effect_Engineered_Lattice.pdfPre-Published version5.31 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

87
Last Week
4
Last month
Citations as of Apr 14, 2025

Downloads

19
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

19
Citations as of Jul 10, 2025

WEB OF SCIENCETM
Citations

16
Citations as of Apr 24, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.