Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/94176
Title: | Validation methodology for PEM fuel cell three-dimensional simulation | Authors: | Xie, B Ni, M Zhang, G Sheng, X Tang, H Xu, Y Zhai, G Jiao, K |
Issue Date: | Jun-2022 | Source: | International journal of heat and mass transfer, June 2022, v. 189, 122705 | Abstract: | For modeling and simulation of proton exchange membrane (PEM) fuel cell, validation has been an essential and challenging task. This study implements a comprehensive validation including both overall cell performance and local distribution characteristics under different operating conditions with experimental data from two public sources. Polarization curve, cell ohmic resistance, current density distribution and temperature distribution are all involved. A “three dimensional + one dimensional” (“3D+1D”) model is adopted which simplifies part of cell components in order to boost the calculation efficiency. The validation methodology is clarified by listing those undetermined model parameters and analyzing their “accessibility” as well as correlations with the three kinds of voltage losses (activation, ohmic and mass transfer). It is found that the control regions of ohmic voltage loss and concentration voltage loss overlap among a wide current density range, which may lead to misjudgment in the validation process. The details of parameter adjustment are also shared. Simulation results of the two validation tests both obtain decent agreement with the experiments and reflect consistent variation trends as the condition changes. The liquid water in gas channel is proved to have a double effect on cell performance and should be taken into careful consideration especially under low humidification and high current density working conditions. | Keywords: | Channel liquid water Current density distribution PEM fuel cell Three-dimensional simulation Validation |
Publisher: | Pergamon Press | Journal: | International journal of heat and mass transfer | ISSN: | 0017-9310 | EISSN: | 1879-2189 | DOI: | 10.1016/j.ijheatmasstransfer.2022.122705 | Rights: | © 2022 Elsevier Ltd. All rights reserved. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. The following publication Xie, B., Ni, M., Zhang, G., Sheng, X., Tang, H., Xu, Y., . . . Jiao, K. (2022). Validation methodology for PEM fuel cell three-dimensional simulation. International Journal of Heat and Mass Transfer, 189, 122705 is available at https://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.122705. |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Xie_Validation_Methodology_PEM.pdf | Pre-Published version | 1.24 MB | Adobe PDF | View/Open |
Page views
61
Last Week
4
4
Last month
Citations as of Nov 3, 2024
Downloads
9
Citations as of Nov 3, 2024
SCOPUSTM
Citations
36
Citations as of Nov 7, 2024
WEB OF SCIENCETM
Citations
29
Citations as of Aug 22, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.