Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94173
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.creatorLi, Zen_US
dc.creatorHe, Qen_US
dc.creatorWang, Cen_US
dc.creatorXu, Qen_US
dc.creatorGuo, Men_US
dc.creatorBello, ITen_US
dc.creatorNi, Men_US
dc.date.accessioned2022-08-11T01:07:36Z-
dc.date.available2022-08-11T01:07:36Z-
dc.identifier.issn0378-7753en_US
dc.identifier.urihttp://hdl.handle.net/10397/94173-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2022 Elsevier B.V. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Li, Z., He, Q., Wang, C., Xu, Q., Guo, M., Bello, I. T., & Ni, M. (2022). Ethylene and power cogeneration from proton ceramic fuel cells (PCFC): A thermo-electrochemical modelling study. Journal of Power Sources, 536, 231503 is available at https://dx.doi.org/10.1016/j.jpowsour.2022.231503.en_US
dc.subjectCogenerationen_US
dc.subjectEthane dehydrogenationen_US
dc.subjectEthylene productionen_US
dc.subjectNumerical modellingen_US
dc.subjectProton ceramic fuel cellen_US
dc.titleEthylene and power cogeneration from proton ceramic fuel cells (PCFC) : a thermo-electrochemical modelling studyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume536en_US
dc.identifier.doi10.1016/j.jpowsour.2022.231503en_US
dcterms.abstractEthylene is a vital chemical worldwide but its production is very energy-intensive with high CO2 emissions. C2H6-fueled proton ceramic fuel cells (PCFCs) are promising electrochemical processes for cogeneration of ethylene and electric power with high performance and low emission. Herein, a tubular thermos-electrochemical model is established to investigate the characteristics of C2H6-fueled PCFC. Parametric studies are performed to examine the effects of operating voltage, inlet fuel flow rate, and inlet temperature on PCFC cogeneration performance. PCFC under open-circuit voltage (OCV) condition at 700 °C, the ethane conversion and ethylene selectivity are 15.69% and 99.47%, respectively. The ethylene production is enhanced by the electrochemical reaction. At 0.4 V and 700 °C, the conversion of ethane is increased to 32.59% and the PCFC can deliver a peak power density of 146.12 mW cm−2. Increasing the inlet temperature significantly improves the cogeneration performance of PCFC but also increases the temperature gradient in the cell. In addition, H2 depletion in the anode results in local electrochemical performance degradation. The results demonstrate the enhanced ethylene production by electrochemical processes and the operating and structural parameters can be optimized in the subsequent study to further improve ethylene production.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of power sources, July 2022, v. 536, 231503en_US
dcterms.isPartOfJournal of power sourcesen_US
dcterms.issued2022-07-
dc.identifier.scopus2-s2.0-85129425085-
dc.identifier.eissn1873-2755en_US
dc.identifier.artn231503en_US
dc.description.validate202208 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1636-
dc.identifier.SubFormID45696-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Ethylene_Power_Cogeneration.pdfPre-Published version2.89 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

79
Last Week
3
Last month
Citations as of Apr 14, 2025

Downloads

22
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

22
Citations as of May 8, 2025

WEB OF SCIENCETM
Citations

20
Citations as of Apr 10, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.