Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94144
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorSiddiqui, FRen_US
dc.creatorTso, CYen_US
dc.creatorQiu, HHen_US
dc.creatorChao, CYHen_US
dc.creatorFu, SCen_US
dc.date.accessioned2022-08-11T01:07:24Z-
dc.date.available2022-08-11T01:07:24Z-
dc.identifier.issn1290-0729en_US
dc.identifier.urihttp://hdl.handle.net/10397/94144-
dc.language.isoenen_US
dc.publisherElsevier Massonen_US
dc.rights© 2022 Elsevier Masson SAS. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Siddiqui, F. R., Tso, C. Y., Qiu, H. H., Chao, C. Y. H., & Fu, S. C. (2022). Copper-alumina hybrid nanofluid droplet phase change dynamics over heated plain copper and porous residue surfaces. International Journal of Thermal Sciences, 182, 107795 is available at https://dx.doi.org/10.1016/j.ijthermalsci.2022.107795.en_US
dc.subjectDroplet phase changeen_US
dc.subjectHeated residueen_US
dc.subjectHybrid nanofluiden_US
dc.subjectLatent heat fluxen_US
dc.subjectMarangoni convectionen_US
dc.titleCopper-alumina hybrid nanofluid droplet phase change dynamics over heated plain copper and porous residue surfacesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume182en_US
dc.identifier.doi10.1016/j.ijthermalsci.2022.107795en_US
dcterms.abstractDroplet phase change is the key phenomenon for high heat transfer rates in spray or drop-wise cooling applications. Despite high cooling efficiency of the spray cooling technology, conventional fluids, such as water, cannot be used for thermal management of modern high heat flux devices due to their immense power density, resulting in early device failures. To address this issue, in this research, we experimentally study the evaporation performance for various volumes of the copper-alumina hybrid nanofluid (CAHF) droplet on a plain copper substrate and compare it with water (H2O) droplet in sub-boiling and boiling regimes (i.e., for substrate temperatures of 25–170 °C). We also numerically investigate and compare the internal velocity and thermal fields of CAHF and H2O droplets on a heated plain copper substrate. Besides the plain copper surface, we examine the phase change behaviour of the subsequent CAHF droplet over a heated residue surface that was obtained from the phase transition of the first CAHF droplet on a heated plain copper substrate. Our results demonstrate that the evaporation rate of CAHF droplets on a plain copper surface is up to 24% and an order of magnitude higher than water droplets in sub-boiling and nucleate boiling regimes, respectively. Moreover, the evaporation rate of the CAHF droplet on a residue surface increases up to 141% and 800% compared to that on a plain copper surface in sub-boiling and nucleate boiling regimes, respectively. Furthermore, the latent heat flux up to 10 times can be achieved using the CAHF droplet compared to H2O droplet on a plain copper substrate in the nucleate boiling region, making the CAHF a potential fluid for high heat flux cooling applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of thermal sciences, Dec. 2022, v. 182 , 107795en_US
dcterms.isPartOfInternational journal of thermal sciencesen_US
dcterms.issued2022-12-
dc.identifier.scopus2-s2.0-85134434016-
dc.identifier.artn107795en_US
dc.description.validate202208 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1619-
dc.identifier.SubFormID45628-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Siddiqui_Copper-Alumina_Hybrid_Nanofluid.pdfPre-Published version3.72 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

78
Last Week
1
Last month
Citations as of Apr 14, 2025

Downloads

2
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Jan 2, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.