Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94109
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorBo, Len_US
dc.creatorLi, Ten_US
dc.creatorYu, Xen_US
dc.date.accessioned2022-08-11T01:07:10Z-
dc.date.available2022-08-11T01:07:10Z-
dc.identifier.issn0304-4149en_US
dc.identifier.urihttp://hdl.handle.net/10397/94109-
dc.language.isoenen_US
dc.publisherElsevier BV, North-Hollanden_US
dc.rights© 2022 Elsevier B.V. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Bo, L., Li, T., & Yu, X. (2022). Centralized systemic risk control in the interbank system: Weak formulation and Gamma-convergence. Stochastic Processes and their Applications, 150, 622-654 is available at https://dx.doi.org/10.1016/j.spa.2022.05.005.en_US
dc.subjectGamma-convergenceen_US
dc.subjectInterbank systemen_US
dc.subjectMean field controlen_US
dc.subjectStochastic FPK equationen_US
dc.subjectWeak formulationen_US
dc.titleCentralized systemic risk control in the interbank system : weak formulation and Gamma-convergenceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage622en_US
dc.identifier.epage654en_US
dc.identifier.volume150en_US
dc.identifier.doi10.1016/j.spa.2022.05.005en_US
dcterms.abstractThis paper studies a systemic risk control problem by the central bank, which dynamically plans monetary supply to stabilize the interbank system with borrowing and lending activities. Facing both heterogeneity among banks and the common noise, the central bank aims to find an optimal strategy to minimize the average distance between log-monetary reserves of all banks and the benchmark of some target steady levels. A weak formulation is adopted, and an optimal randomized control can be obtained in the system with finite banks by applying Ekeland's variational principle. As the number of banks grows large, we prove the convergence of optimal strategies using the Gamma-convergence argument, which yields an optimal weak control in the mean field model. It is shown that this mean field optimal control is associated to the solution of a stochastic Fokker–Planck–Kolmogorov (FPK) equation, for which the uniqueness of the solution is established under some mild conditions.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationStochastic processes and their applications, Aug. 2022, v. 150, p. 622-654en_US
dcterms.isPartOfStochastic processes and their applicationsen_US
dcterms.issued2022-08-
dc.identifier.scopus2-s2.0-85131443208-
dc.description.validate202208 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1587-
dc.identifier.SubFormID45536-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University research grant under no. P0031417en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Bo_Risk_Control_Gamma-convergence.pdfPre-Published version1.13 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

85
Last Week
1
Last month
Citations as of Nov 10, 2025

Downloads

36
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.